首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对惩罚因子C和核参数g选择不当造成支持向量机(SVM)分类效果不理想的问题,在基本粒子群(PSO)算法基础上引入动态惯性权重、全局邻域搜索、种群收缩因子、粒子变异概率等操作,提出了一种新的改进型粒子群(IPSO)算法优化SVM参数的分类器。采用Libsvm工具箱中的公共数据集BreastTissue,Heart和Wine来测试其分类效果,结果表明IPSO-SVM分类器在预测精度和分类时间上明显优于SVM和PSO-SVM分类器。然后将其应用于滚动轴承的二分类问题和多分类问题的故障诊断中,仿真实验证明IPSOSVM分类器能显著提高全局收敛能力和收敛速度,可得到理想的分类结果。最后,用IPSO-SVM分类器对实际轴承进行故障诊断,结果验证了其拥有良好的分类稳定性,值得进一步在工程领域内推广。  相似文献   

2.
为了更快、更准确的对滚动轴承的故障状态进行诊断,提出了一种结合信息熵(information entro-py,IE)和α稳定分布(alpha stable distribution,ASD)参数的特征融合方法IE-ASD,基于振动信号对滚动轴承进行故障诊断.首先提取振动信号的时域、频域和时-频域的四种IE(奇异谱熵、...  相似文献   

3.
针对滚动轴承故障损伤程度难以确定的问题,提出对滚动轴承不同故障位置、不同损伤程度的振动信号进行故障特征提取及智能分类的故障诊断方法。首先,对各状态振动信号进行α稳定分布四参数估计,选取敏感性及稳定性最好的二种参数组成二维故障特征量;然后,输入到经过粒子群优化算法(particle swarm optimization,简称PSO)进行参数优化后的最小二乘支持矢量机(least squares support vectors machine,简称LSSVM)中进行故障诊断;最后,通过台架试验数据验证了该方法的有效性,并与未经过PSO参数优化的LSSVM、支持向量机(support vectors machine,简称SVM)方法的诊断结果进行比较。结果表明:该方法可实现滚动轴承故障位置及损伤程度的智能诊断,比未经PSO参数优化的LSSVM、SVM方法具有更优的泛化性,更短的训练、测试时间,可应用于实际工程。  相似文献   

4.
黄磊  马圣 《轴承》2021,(10):60-66
为提高滚动轴承故障诊断的准确性,提出基于信息增益比的奇异谱分析(IGRSSA)与改进粒子群算法优化支持向量机(IPSO-SVM)的诊断模型.首先,引入信息增益比实现信号自适应重构;其次,采用动态惯性权重和梯度信息对粒子群算法进行改进并用于优化支持向量机;然后,用IGRSSA对滚动轴承外圈故障、钢球故障和正常3种状态的振...  相似文献   

5.
针对现有支持向量机(support vector machines,简称SVM)在构造多类分类器的过程中存在计算费时、搜索率不高的问题,提出了一种新的SVM决策树设计算法.引入具有优良的全局搜索性能的粒子群算法,将其应用于优化决策树,构造出一种自适应性强、识别率高的多元分类器,实现SVM的有效多值分类.将其结果应用于齿轮箱故障诊断中,试验结果证明改进后的SVM构造方法的有效性和准确性.  相似文献   

6.
对滚动轴承几种常见点蚀故障的振动信号特征值进行分析,使用粗糙集基于熵的离散化算法进行属性离散化,并采用基于属性重要度的启发式约简算法进行属性约简,然后选用径向基核函数的支持向量机将经过属性约简的特征向量输入支持向量机训练,建立支持向量机模型并进行故障识别与诊断。实验分析结果表明,应用粗糙集和支持向量机相结合的混合智能诊断方法,将粗糙集作为支持向量机的前置系统对数据进行预处理,利用粗糙集可以减少信息表达的属性数量和故障诊断决策系统的规则数,使支持向量机输入端数据量大大减少,提高系统的处理速度,对于滚动轴承振动信号的故障模式识别可以获得良好的效果。从而验证了粗糙集理论对滚动轴承故障诊断的有效性以及其应用价值。  相似文献   

7.
基于支持向量机的滚动轴承故障诊断研究   总被引:1,自引:2,他引:1  
在分析支持向量机多分类算法和滚动轴承故障诊断特征向量的基础上,建立了基于支持向量机的滚动轴承故障诊断模型,并对模型进行了鲁棒性研究.对建立的数学模型进行了试验验证,结果表明,建立的诊断模型对轴承故障诊断具有良好的诊断效果.  相似文献   

8.
刘晓东  史贤俊  廖剑 《仪表技术》2015,(3):23-26,37
目前SVM核参数的选择是SVM实际应用的难点。通过分析SVM分类器原理,提出一种基于数据最大方差-熵准则的SVM核参数选择算法。该算法利用最大方差-熵准则衡量样本在特征空间中的线性可分性,然后结合PSO算法进行参数寻优,并将其用于双二次滤波电路的故障诊断中,优选得到的核参数提高了故障诊断的精度。  相似文献   

9.
《机械传动》2017,(3):166-171
针对表征滚动轴承故障信号特征难提取及支持向量机结构参数依据经验选取,致使故障分类模型的精度、泛化能力差的问题,提出一种基于Hilbert包络谱奇异值和改进粒子群(Improved particle swarm optimization,IPSO)优化支持向量机(Support vector machine,SVM)的滚动轴承状态辨识方法。首先,利用经验模态分解(Empirical mode decomposition,EMD)所采集的滚动轴承信号,并将所获相关程度较大的本征模式分量(Intrinsic mode function,IMF)进行Hilbert解调包络分析来获取包络矩阵,并在此基础上进行奇异值分解。其次,利用IPSO算法优化SVM的惩罚系数和高斯核系数两个结构参数,据此建立滚动轴承故障分类模型;并利用美国凯斯西储大学轴承数据验证了方法的有效性。实验结果表明:与基于BP、SVM的故障分类模型相比,Hilbert包络谱奇异值和IPSO优化SVM的滚动轴承故障诊断分类模型具有更高的精度、更强的泛化能力。  相似文献   

10.
针对滚动轴承发生故障时,振动信号的时域和频域特征都会发生变化的特点,提出了基于集合经验模态分解(EEMD)、改进果蝇优化算法(MFFOA)和支持向量机(SVM)的滚动轴承故障诊断方法。该方法主要是利用EEMD方法对故障信号进行分解,并计算各IMF分量的均方根值和重心频率,以此进行归一化处理得到特征向量。为了提高诊断精度,采用果蝇优化算法优化SVM参数,建立MFFOA-SVM模型,然后对提取的特征向量进行训练与测试,从而识别故障与否及发生点蚀故障的程度。利用该方法对实测信号进行分析与诊断,并与遗传算法的优化结果进行对比,验证了该方法的有效性,说明其具有良好的应用前景。  相似文献   

11.
滚动轴承是航空发动机中应用非常广泛的一种通用机械部件,本文提出了基于支持向量机的航空发动机轴承故障诊断模型,并且通过实证研究,证明了该方法在航空发动机故障诊断的优越性。  相似文献   

12.
针对平稳自回归模型无法准确描述滚动轴承振动信号的非平稳性,提出一种结合小波包分解与自回归模型的故障特征提取方法,以提取能准确反映轴承运行状态的特征向量。首先,通过小波包变换对滚动轴承运行时产生的非平稳振动信号进行分解,得到一系列刻画原始信号特征的系数;然后,利用自相关算法对各系数建立自回归模型,并将自回归模型的参数作为特征向量;最后,采用支持向量机分类器对提取的特征向量进行故障分类,从而实现滚动轴承的智能故障诊断。仿真结果表明该方法的有效性。  相似文献   

13.
针对滚动轴承特征提取和故障识别两个关键环节,提出了一种广义复合多尺度加权排列熵(GCMWPE)与参数优化支持向量机相结合的故障诊断方法。利用GCMWPE全面表征滚动轴承故障特征信息,构建高维故障特征集。应用监督等度规映射(S-Isomap)算法进行有效的二次特征提取。采用天牛须搜索优化支持向量机(BAS-SVM)诊断识别故障类型。将所提方法应用于滚动轴承实验数据分析过程,结果表明:GCMWPE特征提取效果优于多尺度加权排列熵、复合多尺度加权排列熵和广义多尺度加权排列熵;GCMWPE与S-Isomap相结合的特征提取方法可在低维空间中有效区分滚动轴承不同故障类型;BAS-SVM的识别正确率和识别速度优于粒子群优化支持向量机、模拟退火优化支持向量机和人工鱼群优化支持向量机;所提方法能够有效、精准地识别出各故障类型。  相似文献   

14.
将自回归模型(AR)和支持向量机(SVM)应用到机床滚动轴承的故障诊断中,根据滚动轴承的振动信号建立自回归模型,以自回归参数和残差的方差作为特征向量,然后建立基于支持向量机的多故障分类器,进而判断滚动轴承的故障类型.通过实例分析和与神经网络方法对比,表明该方法能有效地判别机床滚动轴承的故障类型.  相似文献   

15.
量子遗传算法优化的SVM滚动轴承故障诊断   总被引:1,自引:0,他引:1  
针对单一测度模型的特征评价方法存在特征敏感度"欠学习",以及支持向量机(support vector machines,简称SVM)参数优化算法普遍存在收敛速度慢、易陷入局部极值等问题,提出一种量子遗传算法优化的SVM滚动轴承故障诊断方法。首先,采集振动信号中的时域和频域特征构成多域多类别原始故障特征集;其次,构建一个基于相关性、距离及信息等测度的混合特征评价模型,得到特征权重与特征值组合构成的加权故障特征集;最后,将加权故障特征集为输入,将量子熵引入到量子遗传算法当中,对SVM的结构参数进行全局优化,完成滚动轴承故障模式的识别。试验结果表明,该方法能够以更快的速度收敛至全局最优解,在保证聚类性能的基础上提高了滚动轴承的诊断精度。  相似文献   

16.
为了提高车用燃料电池系统的安全可靠性和可维护性,考虑到其大量完整的故障样本难以获取,提出了一种基于二叉树多分类器的支持向量机故障诊断方法.首先,以自主研发的60 kW车用燃料电池系统为研究对象,分析了其故障机理和特征;然后,融合15种故障征兆参数并进行归一化预处理作为支持向量机的输入,以14种典型故障作为输出,选取径向基核函数并利用粒子群优化算法对支持向量机的惩罚参数和核函数参数进行优化,利用310组样本数据对其进行训练,通过90组测试样本测试实现了其典型故障的识别;最后,将支持向量机和神经网络分别在不同训练样本数下的故障诊断性能进行了对比.仿真结果表明,支持向量机具有较好的故障正判率和泛化能力,可有效用于车用燃料电池系统的多故障诊断.  相似文献   

17.
利用幅域参数对滚动轴承早期故障进行监测和诊断。分析了滚动轴承典型故障的机理及其振动特征,针对滚动轴承的典型故障特征,提出采用了幅域参数指标的诊断方法。基于Windows平台,利用Matlab软件编制了滚动轴承振动信号幅域参数指标计算程序,并且通过QPZZ-II旋转机械故障试验系统进行了滚动轴承故障的实例模拟并对所编程序进行了验证。结果表明,利用振动信号幅域参数指标对滚动轴承进行早期故障诊断,效果良好。  相似文献   

18.
针对滚动轴承故障识别问题,提出了基于矩不变量和支持向量机的智能诊断方法。该方法采用连续小波变换对滚动轴承信号进行分析,然后提取出小波灰度图的7个矩不变量作为故障特征,最后将特征向量输入到支持向量机中,以实现对不同的滚动轴承故障类型的识别。试验结果表明,该方法能有效地提取故障特征,同时可获得较好的分类效果。  相似文献   

19.
基于柔性形态滤波和支持矢量机的滚动轴承故障诊断方法   总被引:8,自引:1,他引:7  
针对滚动轴承故障振动信号的强噪声背景以及现实中不易获取大量典型故障样本的特点,提出一种基于柔性形态滤波和支持矢量机(Support vector machine, SVM)的滚动轴承故障诊断方法。柔性形态滤波既可以有效地提取出信号的边缘轮廓和信号的形状特征,同时又具有稳健性;SVM具有良好的分类性能,特别在小样本、非线性及高维特征空间中具有较好的推广能力;SVM分类器的惩罚因子和核函数参数采用经典粒子群优化算法进行优化,避免传统方法对初始点和样本的依赖。首先对振动信号进行柔性形态滤波,然后提取滤波后信号的故障特征频率的归一化能量为特征矢量作为SVM分类器的输入参数,用于区分滚动轴承的外圈、内圈和滚动体故障,SVM分类器的参数采用标准粒子群优化算法进行优化。试验结果表明了方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号