首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用SEM原位拉伸实验,研究了Ti555211钛合金片层组织的拉伸变形和断裂行为。结果表明:在拉伸载荷作用下,滑移带优先出现在与加载方向大于45°的片层组织上。在裂纹扩展过程中,滑移带的密度均随着载荷的增加逐渐增大,为沿片层和跨片层交叉断裂。原位拉伸试样断口分析表明,韧性断裂是片层组织试样的主要断裂方式。试样断口存在明显剪切唇和大量断裂韧窝。SEM原位拉伸实验分析方法能够对新型Ti555211近β钛合金的变形和断裂行为进行实时跟踪,该方法的研究结果具有科学价值和参考意义。  相似文献   

2.
利用SEM原位拉伸实验,研究了Ti555211合金具有初始双态组织的拉伸变形和断裂行为。结果表明:在拉伸载荷作用下,双态组织试样中滑移带优先出现在初生α相内(与拉伸轴呈45°),在裂纹扩展过程中,合金内滑移带的密度均随着载荷的增加逐渐增加,双态组织试样的断裂方式为微孔聚集型断裂。原位拉伸试样断口分析表明,韧性断裂是双态组织试样的主要断裂方式,双态组织试样断口没有明显剪切唇,存在小范围的剪切滑移造成的平坦面。SEM原位拉伸实验分析方法能够对该合金的变形和断裂行为进行实时跟踪,该方法的研究结果更加具有重大的理论价值和工程意义。  相似文献   

3.
将TC4合金加热到相变点以上,经不同冷却方式冷却后获得了不同厚度的α相片层组织,用扫描电镜观察了不同片层厚度TC4钛合金在室温下的原位拉伸变形过程;使用原子力显微镜和激光共聚焦显微镜分别观察了拉伸变形后的滑移情况和断口的3D形貌。结果表明:TC4钛合金在热处理过程中,冷速越快,α片层越薄;在塑性变形阶段,厚薄两种片层组织中的滑移剪切带与拉伸方向呈大约45°角;拉伸加载初期,微裂纹萌生于试样缺口处,随着载荷的增加次生裂纹易产生于α/β相界,然后相互连接形成主裂纹;厚片层试样中裂纹主要沿相界和穿层的方式扩展,薄片层试样中裂纹扩展主要以穿层方式为主;厚片层试样的拉伸断口中存在着较多解理面以及撕裂棱,主要是解理断裂,而薄片层试样断口中有少量韧窝和解理面,主要是准解理断裂。  相似文献   

4.
通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了片层Ti-55531合金在拉伸和扭转载荷下的断裂失效行为。结果表明,片层Ti-55531合金在拉伸和扭转载荷下的断裂失效有显著的不同:拉伸变形受滑移、次生α_s的孪生及剪切共同控制,扭转变形主要受滑移和剪切控制,未发现有孪晶;拉伸断口较扭转断口陡峭,失效以微孔聚集为主,含少量穿晶解理和沿晶开裂的混合断裂机制;扭转断裂失效则以微孔聚集和剪切开裂为主,含部分穿晶解理的混合断裂机制。无论在拉伸还是扭转载荷下,片层Ti-55531合金的断裂失效面均由最大剪切应力产生,剪切力比正应力更易使片层Ti-55531合金损伤破坏。  相似文献   

5.
通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了双态Ti-55531合金在拉伸和扭转载荷下的变形和断裂失效行为。结果表明,载荷方式对双态Ti-55531合金变形和断裂行为有显著的影响:首先,该合金扭转剪切强度较拉伸强度低约300MPa,表明该合金的断裂对扭转切应力的敏感性高于拉伸应力。其次,拉伸和扭转变形时,合金主要都受滑移和剪切共同控制,但相对拉伸变形扭转变形时等轴αp产生的剪切滑移带数量更多;且变形时晶界α和等轴αp的界面处易堆积高密度位错。最后,拉伸断口较扭转断口陡峭,拉伸断裂失效是以微孔聚集为主的穿晶断裂机制;而扭转断裂失效则是以微孔聚集和剪切开裂的混合断裂机制。  相似文献   

6.
设计可实现不同应力状态的原位拉伸试样,在SEM下进行原位拉伸试验,对断裂过程做了详细的研究和分析.试验表明,不同应力状态下的试样表面在拉伸过程中都产生了大量的滑移带,但其韧性断裂机制不同.随着三轴应力度的降低,断裂从韧窝剪切机制向纯剪切断裂机制过渡,试件断口也由韧窝断裂模式向剪切断裂模式演变;6063铝合金的晶界最薄弱,微裂纹形核于晶界,随载荷增大,微裂纹之间通过扩展或剪切连接导致试样断裂;试样最小截面上的三轴应力度越小,试样断口的两个面上韧窝的取向越明显,而且断口越光滑.  相似文献   

7.
利用原位高温拉伸台在扫描电镜中研究了镍基铸造高温合金MAR-M247在室温、400 ℃与760 ℃拉伸过程中的动态组织演变和断裂机制。原位测试结果表明,在室温到760 ℃范围内,MAR-M247合金的屈服强度与抗拉强度随温度的升高略有下降,拉伸塑性略有提高。室温原位拉伸过程中,并没有出现滑移带;400 ℃与760 ℃的原位拉伸,只在样品断口附近存在少量的滑移带。随拉伸温度的提高,合金的断裂机制并无明显变化,均表现为韧性穿晶断裂。合金的微裂纹主要来源于变形过程中碳化物的破裂,晶内与晶界都存在因碳化物破裂而形成的微裂纹。  相似文献   

8.
孪晶界作为低能稳定界面易在低层错能金属中被调控而成为近年来研究的热点。固溶态GH3625合金组织中含有大量退火孪晶组织。本实验采用室温原位拉伸结合扫描电子显微镜(SEM)观察和能谱(EDS)分析的方法研究了固溶态GH3625合金中孪晶组织演变及断裂行为。结果表明,GH3625合金在原位拉伸变形过程中,孪晶组织内部主要以单滑移为主;在拉伸直至断裂的过程中,随变形量的增加,孪晶界逐渐发生弯曲,但孪晶界始终存在于合金组织中,起阻碍位错的作用,具有良好的室温机械稳定性。GH3625合金断裂时既有韧性断裂又有脆性断裂,碳化物偏析是造成晶界裂纹以及晶内孔洞形成的主要原因。  相似文献   

9.
铸造TiAl合金定向层片组织的室温拉伸性能和断裂行为   总被引:1,自引:1,他引:1  
评价了常规铸造Ti-47.5Al-2.5V-1.0Cr(at%)合金定向层片组织的室温拉伸性能和断裂韧性,并结合断口形貌分析其断裂行为。结果表明:该定向层片组织在承受平行于层片界面载荷作用时,表现出优异的室温抗拉强度和塑性组合,且其室温拉伸塑性可达到3.8%,明显优于其他铸造TiAl合金。其较高的室温拉伸塑性归因于定向层片组织的一致性和穿层断裂区发生较大程度的塑性变形。定向层片组织室温拉伸的主要断裂模式是穿层断裂,断裂起源于层片界面端部垂直于试样表面的TypeⅡ层片区域,而不是层片界面平行于试样表面的TypeⅠ层片区域。其主要原因是TypeⅡ层片具有比TypeⅠ层片低的裂纹萌生和扩展抗力。  相似文献   

10.
用SEM-520原位拉伸实验对可以实现不同应力的6063铝合金试件的断裂过程做了详细研究和分析.研究结果表明:不同应力状态下的铝合金试样在拉伸过程在其表面上都产生了大量的滑移带,但断裂机制不同.随着三轴应力度的降低,断裂从正断向剪断过渡,试件断口也由韧窝断裂模式向剪切断裂模式演变;6063铝合金晶界是其最薄弱环节,大量微裂纹产生于晶界,随着载荷的增加,微裂纹长大和扩展,与此同时,在局部变形带中沿晶界和滑移带又产生了新的微裂纹,微裂纹之间通过扩展或剪切而连接导致试样断裂;试样最小截面上的三轴应力度越小,试样断口的2个面上韧窝的取向越明显,而且断口越光滑.  相似文献   

11.
垂直晶界铜双晶的拉伸变形行为   总被引:1,自引:0,他引:1  
利用数字图像相关法研究了垂直晶界铜双晶试样的拉伸变形行为,获得了拉伸过程中试样表面的全场变形分布。结果表明:试样整体变形呈"双颈缩"现象,试样表面的应变分布不均匀,晶界附近的应变水平低于晶粒内部的,试样总是在软取向的晶粒内首先发生塑性变形并断裂。借助扫描电镜(SEM)原位拉伸实验观察到在拉伸过程中滑移带不能穿过晶界。以上结果说明,铜双晶试样拉伸变形行为与组元晶粒的晶体取向和晶界的属性有关,软取向的晶粒更容易发生塑性变形,而大角度晶界在拉伸过程中具有强化效应,对晶粒的滑移变形有阻碍作用。  相似文献   

12.
剪应力状态下6061铝合金的力学性能及断裂行为   总被引:2,自引:0,他引:2  
对设计的拉伸剪切试样和原位拉伸剪切试样分别进行不同剪应变率下的拉伸剪切试验及原位拉伸剪切试验,研究6061铝合金在剪力状态下的力学性能及断裂行为,并用有限元软件ABAQUS对铝合金在剪应力状态下的断裂行为进行模拟。结果表明:随着剪应变率的增大,6061铝合金的剪切屈服强度和抗剪强度基本保持不变,但剪切断裂应变明显减小;剪应变率对试样的断口形貌没有影响;6061铝合金晶界是其最薄弱环节,在拉伸剪切过程中铝合金试样表面上产生了大量与拉伸方向平行的滑移带;微裂纹在剪应力作用下形核于与拉伸方向平行的滑移带和晶界,随着剪应力的增加,微裂纹长大和扩展;微裂纹之间通过剪切而连接导致试样断裂;6061铝合金剪切断裂行为可以用Johnson-Cook模型进行描述。  相似文献   

13.
采用光学显微镜和扫描电镜观察分析了Ti60合金热暴露前后拉伸试样的显微组织、断裂方式及其断口形貌.结果表明:Ti60合金塑性对试样表面富氧层较为敏感,带有富氧层的试样塑性较低;热暴露前后试样断裂方式发生变化,未经热暴露的试样,断裂起源于试样中心部位,断面凹凸不平,为典型的韧窝型断裂;毛坯热暴露断口上呈现出大量的解理小平面,也可以观察到韧窝形貌,为混合型断口;试样热暴露后,裂纹起源于试样表面,在微观断口上除了断裂小平面外,还有大量的撕裂棱,表现为断裂沿着α片层界面扩展的特征;在高温长时间暴露过程中,氧除了污染试样表面,还会溶解在基体中形成脆性富氧层,这是影响Ti60合金热稳定性能的重要原因.  相似文献   

14.
以不同体积分数的Ti B+La_2O_3原位增强钛基复合材料为研究对象,在室温下对该材料进行SEM原位拉伸实验,通过对裂纹尖端的组织变化以及裂纹扩展路径的原位观察,分别研究了增强体对材料拉伸强度和拉伸断裂行为的影响。结果表明:增加增强体的体积分数可以提高增强体的承载作用并细化基体晶粒,从而提高颗粒增强Ti基复合材料的强度。材料的断裂行为表现为增强体断裂后微裂纹的萌生、扩展及其和滑移带的汇合。高含量的增强体可增加微裂纹的数量,使得其在萌生、扩展后更易与邻近微裂纹或滑移带相贯通,加快宏观裂纹的形成,从而导致了材料塑性的下降。  相似文献   

15.
通过在830℃空气中保温1 h后水冷的热处理工艺,在Ti-10V-2Fe-3Al(Ti1023)钛合金表面形成厚度约为82μm的α富氧复合层。研究了α复合层内显微组织形貌、硬度及元素分布特点及复合α层后对Ti1023合金组织和性能影响。结果表明:α复合层从边缘到基体内部硬度值并非一直减小,而是呈现高-低-高-低-趋于稳定的变化规律。研究表明硬度变化规律与合金元素(尤其V、Fe)及组织形态分布相关。Ti1023合金试样复合α层后表面硬度增加了45%,而屈服强度和抗拉强度下降5%。在拉伸变形过程中,复合α层后试样首先会在垂直于拉伸应力方向的外表面产生裂纹,之后裂纹扩展穿过α层到基体内部直至试样断裂,试样拉伸断口呈现心部韧性断裂和边部脆性断裂特征。拉伸过程中试样内部存在应力诱发β相向α″相的组织转变。  相似文献   

16.
研究了应变速率对一种单晶高温合金760和850 ℃拉伸性能的影响,分析了试样的断口形貌和断裂组织特征。结果表明,随着应变速率的增加,合金的中温拉伸强度稍有增加,伸长率稍有减小。合金中温拉伸性能对应变速率的敏感性非常小。合金中温拉伸断裂机制为类解理断裂,随着应变速率的增加,解理面的总面积减小,滑移带间距变窄。  相似文献   

17.
通过在830℃空气中保温1 h后水冷的热处理工艺,在Ti-10V-2Fe-3Al(Ti1023)钛合金表面形成厚度约为82μm的α富氧复合层。研究了α复合层内显微组织形貌、硬度及元素分布特点及复合α层后对Ti1023合金组织和性能影响。结果表明:α复合层从边缘到基体内部硬度值并非一直减小,而是呈现高-低-高-低-趋于稳定的变化规律。研究表明硬度变化规律与合金元素(尤其V、Fe)及组织形态分布相关。Ti1023合金试样复合α层后表面硬度增加了45%,而屈服强度和抗拉强度下降5%。在拉伸变形过程中,复合α层后试样首先会在垂直于拉伸应力方向的外表面产生裂纹,之后裂纹扩展穿过α层到基体内部直至试样断裂,试样拉伸断口呈现心部韧性断裂和边部脆性断裂特征。拉伸过程中试样内部存在应力诱发β相向α″相的组织转变。  相似文献   

18.
通过高温拉伸、SEM、TEM等方法对7D04-T7451铝合金厚板在不同温度下的组织、性能变化及断裂行为进行试验研究。结果表明,随拉伸温度升高,合金的强度降低,伸长率随温度增加而逐渐增加;在较低温度拉伸时,出现了二次析出的现象;当温度超过150℃后,晶内析出相发生了粗化;随温度升高,合金断口逐渐由以位错滑移为主的层片状沿晶断裂转变为以基体/析出相滑脱为主的韧窝断口。  相似文献   

19.
为研究TiAl合金涡轮经压力作用后的组织损伤机制及性能弱化规律,设计了对TiAl合金涡轮先压缩再拉伸的实验方法。利用扫描电镜(SEM)对压缩后的涡轮轴颈表面及内部的滑移和微裂纹进行了分析,并观察了拉伸断口形貌。实验结果表明:随着前期涡轮所受的压力的增大,压缩后的TiAl涡轮剩余抗拉强度逐渐降低,当压力为610 MPa时,剩余抗拉强度仅为86 MPa,强度损失率高达70%。TiAl合金压缩过程中形成了以沿层裂纹为主、穿层裂纹为辅的变形损伤特征。与压缩轴成45°的最大剪应力方向上的沿层裂纹是TiAl合金压缩损伤的主要形式。压缩损伤后的TiAl合金涡轮拉伸断裂均发生在靠近涡轮浇铸冒口侧的细轴颈部位。受压变形后的片层组织中的微小裂纹在随后拉应力作用下继续扩展直至韧带桥被贯穿,小裂纹合并成大裂纹,在断口上表现出沿层和穿层的混合断裂形貌。  相似文献   

20.
研究热加工对电子束焊接TC11/Ti2Al Nb双合金接头显微组织的影响,对焊接件热暴露前后的室温拉伸性能进行测试。结果表明:电子束焊接TC11/Ti2Al Nb双合金熔合区主要由β相组成;经过变形和热处理后,熔合区主要由β、α2和α相组成,同时原始铸态的晶界在变形过程中破碎。在拉伸试验中,熔合区是薄弱区域;在不同的变形条件下,试样(热暴露前后)在此区域发生断裂。热处理后试样的最大室温拉伸强度达到1190 MPa;锻后水冷试样具有较好的塑性,其伸长率达到4.4%。相比较而言,经过(500°C,100 h)的热暴露后,试样的室温拉伸强度略有上升,但塑性变化较小。拉伸断口SEM观察显示,在不同变形条件下穿晶断裂为主要的断裂机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号