首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
周诚  王伯周  霍欢  周群  杨威  叶志虎 《含能材料》2014,22(4):576-578
以硝基胍和甲醛为原料,经缩合反应、硝化反应和肼解反应得到总收率为63.69%的3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT),并对其进行了表征了结构。测试了HDNAT的部分物化、爆轰性能。结果为: 密度1.89 g·cm-3,熔点194~196 ℃,摩擦感度92%,撞击感度100%,H50 26.8cm,爆速9000 m·s-1 (ρ=1.80 g·cm-3).采用VLM method计算其爆压为36.0 GPa。  相似文献   

2.
李亚南  吴敏杰  张生勇  刘宁  王伯周 《含能材料》2015,23(12):1167-1171
以3,5-二氨基-1,2,4-三唑 (DAT)为原料,经重氮化、硝化、N-烷基化等反应合成了N,N-双((3,5-二硝基-1,2,4-三唑-1-基)甲基)硝胺 (BDNTMN)。利用1H NMR, 13C NMR、红外、质谱及元素分析等手段表征了化合物的结构。采用DSC和TG方法分析了目标化合物BDNTMN的主要热性能。采用Gaussian 09程序和Kamlat-Jacbos方程预估了BDNTMN的理化性质和爆轰性能。结果表明,BDNTMN在170.4 ℃ 和254.1 ℃分别有两个热分解峰。预估的BDNTMN的密度、爆速和爆压分别为1.95 g·cm-3、9.03 km·s-1和38.7 GPa,性能优于RDX。  相似文献   

3.
3-硝基-1,2,4-三唑-5-酮脒基脲盐的合成与表征   总被引:1,自引:1,他引:0  
为了克服3-硝基-1,2,4-三唑-5-酮(NTO)的酸性,设计了新的含能离子化合物3-硝基-1,2,4-三唑-5-酮脒基脲盐(GUNTO),以NTO和脒基脲盐酸盐为原料,采用一锅法和分步法两种方法合成了GUNTO,收率均高于85%。用红外光谱、核磁共振、质谱、元素分析和X-射线单晶衍射表征了它的结构。研究了GUNTO的物化性质与爆轰性能。借助晶体密度1.72 g·cm-3和理论计算的生成焓-347.35 kJ·mol-1,运用Kamlet公式预估爆速为6683.49 m·s-1、爆压为19.27 GPa。实测撞击感度、摩擦感度均为0%,特性落高H50大于125.8 cm,10℃·min-1时DSC曲线的峰温为236.8℃。与其他NTO胺盐相比,GUNTO氮含量较高、热稳定性好、感度低。  相似文献   

4.
以双氰胺、二盐酸肼为起始原料,经缩合环化、重氮化硝化、甲基化等三步反应合成1-甲基-3,5-二硝基-1,2,4-三唑(MDNT),总收率为16.75%.精制后,熔点95 ~96℃,纯度大于99%,用核磁氢谱(1 H NMR)、红外光谱(IR)、元素分析对其结构进行了表征.同时,改善了3,5-二氨基-1,2,4-三唑( ...  相似文献   

5.
以硝基胍和甲醛为原料,经缩合反应、硝化反应和肼解反应得到总收率为63.69%的3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT),并对其进行了表征了结构。测试了HDNAT的部分物化、爆轰性能。结果为:密度1.89 g·cm-3,熔点194~196℃,摩擦感度92%,撞击感度100%,H5026.8cm,爆速9000 m·s-1(ρ=1.80 g·cm-3).采用VLM method计算其爆压为36.0 GPa。  相似文献   

6.
以3-氰基~(-1),2,4-三唑为原料,经肟化、重氮化-氯化、硝解、还原、氟化等反应合成了一种含氟偕二硝甲基官能团的新型含能化合物——3-氟偕二硝甲基~(-1),2,4-三唑(FDNMT),利用红外光谱、核磁(~1H NMR、~(13)C NMR)、元素分析和质谱等方法表征了化合物的结构;优化了肟化反应的合成条件:3-氰基~(-1),2,4-三唑和盐酸羟胺摩尔比为1∶1.15,p H值为8,反应时间为2 h,反应温度为60℃,收率为49.0%;获得了FDNMT的单晶并进行了晶体结构解析,该化合物晶体为正交晶系,空间群为Pbcn,晶体学参数为:a=7.4821(11),b=9.8106(15),c=38.683(6),V=2839.5(7)~3,Z=16,μ=0.178 mm~(-1),F(000)=1536;采用Gaussian 09程序中的CBS-4M方法计算了该化合物的生成热,基于密度和计算的生成热,利用Kamlet-Jacobs爆轰方程预估该化合物的爆轰性能:密度1.81 g·cm~(-3),生成热-8.7 k J·mol~(-1),爆速8365.0 m·s~(-1),爆压31.1 GPa,爆热为5614.4 k J·kg~(-1)。  相似文献   

7.
N-脒基脲二硝酰胺盐(FOX-12)的合成与表征   总被引:2,自引:3,他引:2  
以二硝酰胺铵(ADN)和双氰胺为原材料经过一系列反应,制备出新型有机二硝酰胺盐-N-脒基脲二硝酰胺盐(FOX-12),并鉴定了其结构,测定了其熔点、感度、吸湿性等性能。  相似文献   

8.
以硝基胍和甲醛为原料,经缩合反应、硝化反应、肼解反应和复分解反应,合成了3,5-二硝氨基-1,2,4-三唑铅盐,采用DSC和TG-DTG方法分析了其热性能,并测试了真空安定性、吸湿性、相容性、感度性能、5s爆发点、爆热、爆速等物化性质和爆轰性能。结果表明:3,5-二硝氨基-1,2,4-三唑铅盐的热稳定性、真空安定性以及耐吸湿性良好,与RDX、HMX、太安、特屈儿、铁、铝、铜等材料均相容,撞击感度和摩擦感度较叠氮化铅(LA)和斯蒂芬酸铅(LTNR)钝感,5s爆发点为226~228℃,爆热为2 236J·g~(-1),爆速为5 755 m·s~(-1),有望作为LA和LTNR的替代物使用。  相似文献   

9.
以4,6-二硝基苯并连三唑-1-氧化物(DNBTO)为原料,通过复分解、取代、硝化-水解反应设计并合成了未见文献报道的新化合物4,6-二硝基苯并连三唑-3-偕二硝甲基-1-氧化物(TNBTO);采用红外光谱、1H NMR、13C NMR及元素分析等表征了中间体及最终产物的结构;理论计算了TN BTO的密度和生成焓,利用Kamlet-Jacobs方程计算了TN BTO的爆轰性能,其密度为1.81 g·cm-3,爆速为8161.2 m·s-1,爆压为30.2 GPa;利用薄层色谱法跟踪验证了TN BTO的热稳定性,发现TN BTO常温下易分解.  相似文献   

10.
1-三硝甲基-3-硝基-1,2,4-三唑的晶体结构及性能预估   总被引:1,自引:1,他引:0  
殷欣  马卿  王军  王树民 《含能材料》2017,25(5):437-440
为了获得1-三硝甲基-3-硝基-1,2,4-三唑(TNMNT)的晶体结构并对其性能进行预估,以3-硝基-1,2,4-三唑为原料,通过取代、硝化反应合成出了TNMNT,收率为62%,以无水乙醇为溶剂,用溶剂蒸发法培养得到纯的TNMNT单晶,并采用核磁共振谱、红外光谱与X-射线单晶衍射仪进行了结构表征。用DSC-TG法分析了热稳定性。用Gaussian 09 and EXPLO5(V6.02)程序分别计算了生成焓和爆轰参数。结果表明:TNMNT晶体属于单斜晶系,空间群P21/c,晶体参数为a=6.643(3),b=20.494(7),c=6.698(3),β=94.225(9)°,V=909.4(6)3,Z=4,Dc=1.922 g·cm~(-3),μ=0.190 mm~(-1),F(000)=528.0。5℃·min-1升温速率下,TNMNT的热分解峰温为158.3℃。它的标准生成焓为210.9 kJ·mol~(-1),爆速为9023 m·s~(-1),爆压为35.5 GPa。大量分子间和分子内氢键作用的存在使TNMNT分子稳定存在,硝仿基团的引入使TNMNT分子的能量提高。  相似文献   

11.
以2,4,6-三硝基氯苯与2,6-二氨基吡嗪为原料,经过缩合、硝化两步反应,合成了一种新化合物2,6-二苦氨基-3,5-二硝基吡嗪(BPNP),总收率为47%。采用红外光谱(FTIR)、核磁共振(NMR)、质谱(MS)对产物进行了表征。确定了以异丙醇为溶剂,吡啶为催化剂时的产率最高;以V(H_2SO_4)∶V(HNO_3)=4∶1,反应温度50℃,反应时间3h,硝化效果最佳。热重分析(TG)和差示扫描量热结果表明,该化合物的热分解温度为374.3℃,热稳定性与2,6-二苦氨基-3,5-二硝基吡啶(PYX)相当。用MonteCarlo方法估算其理论密度为1.82g·cm~(-3),用Kamlet-Jacobs公式估算其爆速为8.13km·s~(-1),爆压为28.25GPa;采用Miroslav的静电势预估撞击感度的方法,对目标结构进行了稳定性预算,其撞击感度H_(50)的计算值为83cm。理论计算结果说明该材料密度和爆压均高于PYX,具有一定的应用研究价值。  相似文献   

12.
1-氨基-3,5-二硝基-1,2,4-三唑的合成工艺改进及性能   总被引:2,自引:2,他引:0  
以3,5-二氨基-1,2,4-三唑为原料合成出中间体3,5-二硝基-1,2,4-三唑(DNT)钠盐(Ι),用2,4,6-三甲基苯磺酰羟胺(MSH)胺化Ι,得到了目标物1-氨基-3,5-二硝基-1,2,4-三唑(ADNT),收率66%。采用红外、核磁、质谱及元素分析表征了ADNT的结构。确定了较佳的反应条件:室温,摩尔比n(DNT-Na+)∶n(MSH)=1∶1.5,反应时间12 h。采用差示扫描量热法研究了ADNT的热性能,其熔点为128.7℃,分解峰温为225.8℃。按GJB772-1997测试ADNT的撞击感度为H50大于112 cm(落锤2 kg),表明ADTN为性能良好的低感炸药。  相似文献   

13.
周九九  马丛明  刘祖亮  姚其正 《含能材料》2017,25(12):1042-1045
以4-氨基-2,6-二氯吡啶为原料,经过硝化和缩合两步反应,合成出一种新型耐热炸药,4-氨基-2,6-双(5-氨基-1H-四唑基)-3,5-二硝基吡啶(ABDP),总收率为36%。采用核磁共振、质谱及元素分析对产物结构进行表征。分别研究了3-氨基-1,2,4-三氮唑和5-氨基四唑与4-氨基-2,6-二氯-3,5-二硝基吡啶的缩合反应,结果发现,3-氨基-1,2,4-三氮唑中伯胺和仲胺的亲核性相近,5-氨基四唑中仲胺的亲核性优于伯胺。用热重(TG)和差示扫描量热法(DSC)研究了ABDP的热分解性能,发现其在322 ℃有一个热分解峰,322 ℃时总热失重量为97%,采用Rothstein方法计算4-氨基-2,6-双(5-氨基-2H-四唑基)-3,5-二硝基吡啶的爆速为8823 m·s-1,爆压为36.72 GPa。  相似文献   

14.
以2,4,6-三硝基氯苯为原料,先与甲胺醇溶液反应得到1-甲氨基-2,4,6-三硝基苯,再经硝硫混酸硝化得到2,4,6-三硝基苯甲硝铵,最后以二甲亚砜为溶剂,强碱甲醇钠为活化剂,与4-氨基-1,2,4-三氮唑反应得到2,4,6-三硝基-3,5-二氨基-N-(1,2,4-三唑-4)-苯胺,总收率达80.18%,并通过1H NMR、MS、IR对中间体和产物进行了表征。结合反应机理,讨论了影响2,4,6-三硝基-3,5-二氨基-N-(1,2,4-三唑-4)-苯胺合成的关键因素,对其进行DSC和TG测试,结果表明两个热分解峰温分别为210 ℃和328 ℃,在200 ℃以下未出现明显的质量损失过程,升温至500 ℃分解残渣为38.89%,其热稳定性良好。  相似文献   

15.
贾亚楠  申程  王鹏程  陆明 《含能材料》2016,24(6):523-527
以2,4,6-三硝基氯苯,1,1-二氨基-2,2-二硝基乙烯(FOX-7)为原料,咪唑与氟化钾作为催化剂,缩合合成了1,1-二苦氨基-2,2-二硝基乙烯(TFT),熔点为225~226℃,收率71.3%。采用红外光谱、核磁共振、质谱对其进行了表征。通过差示扫描量热研究了其热性能,热分解温度为331.3℃,热稳定性优于FOX-7。用Monte-Carlo方法估算其理论密度为1.85 g·cm~(-3),用Kamlet-Jacobs公式估算其爆热为1751.26 J·g~(-1),爆速为8.83 km·s~(-1),爆压为36.25 GPa;撞击感度H_(50)的计算值为156 cm。理论计算的结果说明该材料较FOX-7钝感,爆压高于FOX-7。  相似文献   

16.
以乙二酸和氨基胍碳酸氢盐为原料,通过成环、硝化、成盐反应合成了5,5'-二硝胺基-3,3'-联-1,2,4-三唑碳酰肼盐(CBNT)。采用红外光谱、核磁共振谱、元素分析表征了其结构。采用差热分析-热重法(DTA-TG)研究了CBNT的热行为,并测试了其撞击感度和摩擦感度。结果表明,CBNT的放热分解峰的温度为229℃,它的撞击感度H_(50)为89 cm,摩擦感度(爆炸百分数)为4%~8%。  相似文献   

17.
3位氨基或硝基取代5-硝基-1,2,4三唑衍生物的合成与表征   总被引:3,自引:3,他引:0  
以3-氨基-5-硝基-1,2,4三唑(ANTA)、3,5-二硝基-1,2,4三唑的铵盐(ADNT)及2,4,6-三硝基氯苯为原料,设计、合成了1-苦基-3-氨基-5-硝基-1,2,4三唑,4-苦基-3,5-二硝基-1,2,4三唑2种未见文献报道的硝基三唑衍生物,其熔点分别为251~252℃,156~157℃,同时改进了2,4,6-三(3-氨基-5-硝基-1,2,4三唑)-1,3,5-均三嗪合成方法,并采用红外光谱、核磁共振光谱、元素分析等对目标化合物进行了结构表征。探讨了3-氨基-5-硝基-1,2,4三唑与2,4,6-三硝基氯苯缩合反应机理,并研究了反应介质、催化剂等关键因素对缩合反应的影响。确定适宜的反应条件为:DMF作为介质,温度70℃,时间8h。  相似文献   

18.
以N,N-二甲基甲酰胺(DMF)为溶剂,优化了4,5-二(1H-四唑-5-基)-1H-咪唑(H3BTI)的合成工艺: 4,5-二氰基咪唑、叠氮化钠和氯化铵的摩尔比为1 2.2 2.2,反应温度90 ℃,反应时间8 h,收率为94.6%。通过红外光谱、1H NMR、13C NMR和元素分析对H3BTI的结构进行了表征,采用DSC和TG/DTG技术研究了H3BTI的热分解性能,用非等温DSC技术研究了热分解反应动力学。研究结果表明,H3BTI的活化能为197.62 kJ·mol-1,指前因子为16.16; H3BTI的临界爆炸温度为556.38 K,大于RDX的487.90 K,表明其热稳定性优于RDX; 热分解反应的活化熵、活化焓和活化自由能分别为35.72 J·mol-1·K-1、193.66 kJ·mol-1和173.33 kJ·mol-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号