共查询到20条相似文献,搜索用时 62 毫秒
1.
丁蒋诚;余先涛;伍晨阳;何嘉鹏 《自动化与仪表》2025,(1):1-5+10
电池荷电状态(state of charge,SOC)的准确估计近年来成为新能源发展的重中之重,也是电池管理系统(BMS)中最核心的部分。针对改进卡尔曼滤波算法(EKF)与门控循环单元神经网络算法(GRU)的缺陷,提出了一种基于3DGRU-EKF的改进SOC估算算法。首先使用二阶RC电池等效模型,利用复合脉冲功率特性测试(HPPC)进行电池参数辨识;随后对电池模型进行状态空间方程的建立,并利用EKF算法进行更新迭代来估算电池的SOC,可以得到卡尔曼增益与SOC估算误差;最后将2个量结合HPPC工况下的电压与电流作为3DGRU网络的输入,真实的SOC作为输出来训练神经网络。实验结果表明,提出的3DGRUEKF算法估算SOC的均方根误差(RMSE)与平均绝对误差(MAE)均小于0.5%,具有良好的效果。 相似文献
2.
3.
4.
5.
准确估计荷电状态是磷酸铁锂电池安全工作和电动汽车正常使用的基础,以混合的简化电化学模型为基础,使用遗忘因子递推最小二乘法(FFRLS)对模型的参数进行辨识。对安时积分法进行参数修正,降低了充放电倍率,温度等因素的影响,并对扩展卡尔曼滤波(EKF)进行改进,使得观测值的修正能力提高。以参数修正过的按时积分法的方程为状态方程,结合开路电压法,利用改进过的EKF进行SOC的估计。与安时积分法相比,SOC的估算效果提高了不少,使估算偏差保持在3%以内。 相似文献
6.
7.
针对复杂工况下难以估算锂电池荷电状态(SOC)的问题,提出一种基于协方差匹配技术的改进的Sage-Husa自适应算法。改进的Sage-Husa自适应算法通过在Sage-Husa自适应算法基础上引入判断滤波是否发散的协方差匹配判据,确保滤波发散时更新噪声的统计特性,滤波收敛时无须重复更新噪声,从而提高了算法的鲁棒性和计算效率。实验结果表明,改进的Sage-Husa自适应算法在动态应力测试(DST)工况和北京公交动态应力测试(BBDST)工况下的SOC估算误差均小于2%,收敛时间小于50 s,证明了该算法在复杂工况下具有较高的估算精度和较快的收敛速度。 相似文献
8.
9.
针对传统的无迹卡尔曼滤波算法(UKF)估计动力锂电池荷电状态(SOC)时,由于滤波迭代过程中系统噪声不确定,可能导致估计结果精度欠佳的问题,提出一种改进的自适应无迹卡尔曼滤波算法(AUKF)动态地估计锂离子电池的SOC.算法以UKF算法为基础,引入改进的Sage-Husa自适应滤波算法,利用观测数据进行滤波递推的同时,... 相似文献
10.
11.
12.
基于极大后验估计的自适应容积卡尔曼滤波器 总被引:1,自引:0,他引:1
针对标准的容积卡尔曼滤波器(CKF) 设计需要精确已知噪声先验统计知识的问题, 提出一种自适应CKF 算法. 该算法在滤波过程中, 利用Sage-Husa 极大后验估值器对噪声的统计特性进行在线估计和修正, 有效地提高了CKF 的估计精度和数值稳定性. 在某些情况下, 噪声协方差估计会出现异常现象使得滤波发散, 进而提出了相应的改进方法. 仿真结果表明了自适应CKF 算法的可行性和有效性, 且明显改善了标准CKF 算法的滤波效果. 相似文献
13.
强跟踪容积卡尔曼滤波器在对含有模型误差和时变噪声的非线性系统进行滤波时, 容易出现性能降低甚至发散. 鉴于此, 提出一种基于变分贝叶斯的强跟踪容积卡尔曼滤波算法. 该算法运用虚拟噪声法补偿模型误差, 假设虚拟噪声均值非零, 且满足高斯分布, 虚拟噪声方差服从逆gamma分布, 在强跟踪容积卡尔曼滤波器估计状态的同时, 采用变分贝叶斯推理估计虚拟噪声参数. 仿真结果表明, 所提出算法对含模型误差与时变噪声的非线性系统具有较好的估计精度, 相比于自适应算法具有更强的鲁棒性. 相似文献
14.
体积积分是一种新的具有较高代数精度的积分方法。为了提高非线性滤波算法的精度和数值稳定性,将体积积分规则和平方根分解引入卡尔曼滤波框架中,提出了平方根体积积分卡尔曼滤波算法(SRCQKF)。新算法采用球半径体积规则和高斯-拉盖尔积分规则计算积分点,利用矩阵的QR分解得到协方差矩阵的平方根并传播平方根。两个典型的非线性系统的实验结果表明,与体积卡尔曼滤波相比,新算法提高了非线性状态的估计精度,具有较高的数值稳定性。 相似文献
15.
16.
针对复杂环境下机器人运动状态估计的精度改善问题, 提出一种面向非线性非高斯系统的改进高斯和容积卡尔曼滤波估计方法. 首先, 引入加权信息量概念来改进期望最大化算法目标函数惩罚项, 使得在优化过程中能考虑更全面的参数信息, 以达到减少期望最大化算法的迭代次数和提高收敛速度的目的. 此外, 以基于马氏距离和Kullback-Leibler (KL)距离的高斯项合并方法为基础, 提出一种能有效联合两类高斯项合并方式的融合模式. 先单独使用马氏距离和KL距离进行高斯混合项合并, 再对获得的高斯混合项进行加权融合处理, 以改善高斯和滤波中多高斯项的合并性能和保真度. 最后, 应用非线性非高斯系统的高斯和容积卡尔曼滤波框架实现对复杂环境下机器人的运动状态估计. 理论分析与仿真结果表明, 该方法能实现对机器人运动更好的状态估计精度, 并具有更强的鲁棒性能. 相似文献
17.
近几年,磷酸铁锂动力电池逐渐成为电动汽车动力电池首选.但是由于材料本身特性,使得磷酸铁锂电池的荷电状态难以精确估算.当电动汽车处于复杂工作环境时,荷电状态估计在保证电动汽车电池操作中的安全性和可靠性方面起到了至关重要的作用.文章采用戴维宁等效电路模型,验证无迹卡尔曼滤波和粒子滤波两种方法的估算效果,并分别与扩展卡尔曼滤波方法作对比,结果证明无迹卡尔曼滤波和粒子滤波都具有更好的估算精度. 相似文献
18.
This paper investigates the cubature Kalman filtering (CKF) for nonlinear dynamic systems. This third‐degree rule based filter employs a spherical‐radial cubature rule to numerically compute the integrals encountered in nonlinear filtering problems, thereby removing the requirements of explicitly computing the Jacobians. The cubature rule, however, requires computing the intractable integrals over a high‐dimensional spherical region for multidimensional applications. Moreover, the cubature formula that has been used to construct the spherical cubature formula has some demerits, most notably its inconvenient properties in computation and low estimation accuracy. Aimed at these issues, a general class of CKFs that uses only cubature rules is derived in this paper. It can be shown that the conventional CKF is a special case of the proposed algorithm. The paper also includes higher‐degree CKFs, especially two representative types of the fifth‐degree CKFs. Performance of the proposed algorithms is demonstrated via two target tracking problems. The experimental results, presented herein, illustrate the superior performance of higher‐degree CKFs to conventional nonlinear filters. 相似文献
19.
针对机载多平台多传感器系统误差配准过程中出现的系统误差参数未知问题,本文提出了一种基于期望最大化(EM)与容积卡尔曼平滑器(CKS)的机载多平台多传感器系统误差配准算法.该算法将传感器的量测系统误差视为系统待估计的未知参数,构建了新的传感器量测方程.引入EM算法框架,在期望步(E–step)利用容积卡尔曼滤波器(CKF)和CKS近似计算对数似然函数的数学期望,在最大化步(M–step)对该数学期望进行最大化处理,最后通过解析更新反复迭代的方式获得各传感器系统误差的参数估计.数值仿真验证了本文提出算法的有效性. 相似文献