首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
刘新天  彭泳  何耀  郑昕昕 《计算机仿真》2021,38(5):66-69,328
动力电池的荷电状态(State of Charge,SOC)是电动汽车的重要参数之一,直接影响电动汽车的安全控制与可续行里程的评估.电池总容量作为估算电池SOC的重要变量之一,其与使用环境温度密切相关,而在SOC估计算法中常被认为是恒定值,从而影响不同环境温度下锂电池SOC估计精度.为实现对锂电池SOC的准确估计,考虑...  相似文献   

2.
3.
准确估计电池的荷电状态(SOC,state of charge)是电动汽车电池管理系统研究的关键技术。基于Thevenin模型建立了状态空间方程组,采用无色卡尔曼滤波(UKF,unscented Kalman filtering)算法实现非线性条件下的SOC准确估计。硬件在环仿真试验表明:UKF估计误差小于5%,且当SOC值低于50%时,其估计结果明显优于扩展卡尔曼滤波(EKF,extended Kalman filtering)方法,有较高的实用价值。  相似文献   

4.
准确估计荷电状态是磷酸铁锂电池安全工作和电动汽车正常使用的基础,以混合的简化电化学模型为基础,使用遗忘因子递推最小二乘法(FFRLS)对模型的参数进行辨识。对安时积分法进行参数修正,降低了充放电倍率,温度等因素的影响,并对扩展卡尔曼滤波(EKF)进行改进,使得观测值的修正能力提高。以参数修正过的按时积分法的方程为状态方程,结合开路电压法,利用改进过的EKF进行SOC的估计。与安时积分法相比,SOC的估算效果提高了不少,使估算偏差保持在3%以内。  相似文献   

5.
针对复杂工况下难以估算锂电池荷电状态(SOC)的问题,提出一种基于协方差匹配技术的改进的Sage-Husa自适应算法。改进的Sage-Husa自适应算法通过在Sage-Husa自适应算法基础上引入判断滤波是否发散的协方差匹配判据,确保滤波发散时更新噪声的统计特性,滤波收敛时无须重复更新噪声,从而提高了算法的鲁棒性和计算效率。实验结果表明,改进的Sage-Husa自适应算法在动态应力测试(DST)工况和北京公交动态应力测试(BBDST)工况下的SOC估算误差均小于2%,收敛时间小于50 s,证明了该算法在复杂工况下具有较高的估算精度和较快的收敛速度。  相似文献   

6.
电池荷电状态(SOC)是描述电池性能的重要指标之一。针对磷酸铁锂电池(LiFePQ_4)的特性,选用了能够较真实地反应电池内部状态的PNGV电路模型,提出了改进模型的方法。采用扩展卡尔曼滤波算法(EKF),说明了扩展卡尔曼滤波估算荷电状态的原理并将内阻R_0看作状态变量进行同时预估更新,改进形成新的卡尔曼滤波算法。在仿真时对充电电流加入了噪声模拟实测数据。结果表明,该方法能够适应电池特性的动态变化,保证较高的SOC估算精度,减小误差,提高实用性。  相似文献   

7.
贾海峰  李聪 《计算机仿真》2021,38(5):55-59,228
针对传统的无迹卡尔曼滤波算法(UKF)估计动力锂电池荷电状态(SOC)时,由于滤波迭代过程中系统噪声不确定,可能导致估计结果精度欠佳的问题,提出一种改进的自适应无迹卡尔曼滤波算法(AUKF)动态地估计锂离子电池的SOC.算法以UKF算法为基础,引入改进的Sage-Husa自适应滤波算法,利用观测数据进行滤波递推的同时,...  相似文献   

8.
针对准确估算电池荷电状态(SOC)值存在着很多难点,且目前无迹卡尔曼滤波法(UKF)存在稳定性差,精度不高的问题,提出改进的UKF算法.加入球型选点规则,降低噪声对仿真的影响,实现非线性条件下锂电池SOC的准确估算.仿真结果表明:改进的UKF估算锂电池SOC时误差控制在1%以内,而扩展卡尔曼滤波法(EKF)和标准UKF...  相似文献   

9.
针对粒子滤波对电动汽车锂电池荷电状态(SOC)估算误差大的问题,在建立二阶RC等效电路模型并利用脉冲放电实现电池参数辨识的基础上,采用了改进的无迹粒子滤波(IUPF)算法.该算法利用无迹卡尔曼在粒子滤波中生成重要的概率密度函数,然后在重采样阶段通过设置粒子阈值选择最优粒子,并用正则化粒子滤波改善了粒子退化问题.分别在恒...  相似文献   

10.
基于一阶Thevenin模型的扩展卡尔曼滤波在实际工程应用中,因为要对系数求其雅各比矩阵,略去了高阶项所表示的部分电池特征,在电池电流变化剧烈情况下极易失真,不能真实地反映电池状态.论文提出了基于二阶Thevenin模型的无迹卡尔曼滤波算法,二阶模型本身就能更加真实地反映电池状态,同时该算法不是对数据进行切割处理,而是...  相似文献   

11.
Accurate battery State of Charge (SOC) estimation is of great significance for safe and efficient energy utilization for electric vehicles. This paper presents a comparison between a novel robust extended Kalman filter (REKF) and a standard extended Kalman filter (EKF) for Li-ion battery SOC indication. The REKF-based method is formulated to explicitly compensate for the battery modeling uncertainty and linearization error often involved in EKF, as well as to provide robustness against the battery system noise to some extent. Evaluation results indicate that both filters have a good average performance, given appropriate noise covariances, owing to a small average modeling error. However, in contrast, the REKF-based SOC estimation method possesses slightly smaller root-mean-square (RMS) error. In the worst case, the robustness characteristics of the REKF result in an obviously smaller error bound (around by 1%). Additionally, the REKF-based approach shows superior robustness against the noise statistics, leading to a better tolerance to inappropriate tuning of the process and measurement noise covariances.  相似文献   

12.
为提升新能源汽车的整车动力性、经济性以及安全性,更精确估算车用锂电池的荷电状态值(SOC),以纯电动汽车动力锂电池为研究对象,采用遗传算法(GA)优化BP神经网络,解决了误差逆传播存在的收敛速度慢、全局范围搜索能力弱、容易陷入局部极小值等缺陷,同时建立了基于GA-BP算法的SOC值预测神经网络模型,通过仿真实验与传统BP算法进行对比,验证该算法兼顾神经网络学习速度、误差小、全局搜索能力并满足动力电池SOC值估算要求。  相似文献   

13.
针对全钒液流电池的荷电状态(SOC)估计精度低、估计成本较高等问题,提出一种基于递推最小二乘算法(RLS)与扩展卡尔曼滤波算法(EKF)相结合的估计方法.该方法通过RLS算法辨识所建立的钒电池数学模型参数,通过EKF算法估计钒电池的SOC,将二者结合实现电池参数发生变化时准确估计钒电池的SOC.以5kW/ 30kWh的钒电池为对象,应用所提出的算法实现钒电池的SOC估计.结果表明,该算法可以准确估计钒电池的SOC,且可节省额外增加单片检测电池测量SOC的费用.  相似文献   

14.
新能源汽车中锂电池的荷电状态(SOC)估计是电池管理系统的关键技术,对其准确估算有重要意义.所提的算法参考无迹卡尔曼滤波(UKF),将无迹变换(UT)融入到扩展H∞滤波中,用以估计锂电池系统状态均值和协方差,避免线性误差累积、增加算法的数值稳定性.在仿真实验中,在不同动态工况下分析了该算法的估计误差,证明算法在面对噪声干扰时具有较好的鲁棒性和准确性,是一种有效可行的算法.  相似文献   

15.
针对蓄电池卡尔曼滤波算法荷电状态SOC(State of Charge)初始值的估计误差较大可能导致前期收敛性较差的问题,通过分析蓄电池放电实验数据,运用灰色关联模型计算电池内阻、电压和电流参数关于SOC的关联度值,将关联度最高的内阻参数作为初始SOC估计值的自变量。然后将初始SOC估计值代入由二阶等效电路模型构建的扩展卡尔曼滤波算法中,进行SOC估计。最后利用电测试平台验证SOC估计准确性,并与电压参数作为初始SOC估计值自变量的方法进行对比。实验结果表明,相对于电压法的初始估计值,内阻法的初始估计值更接近真实值,将其作为卡尔曼滤波算法的起始值,更能提高初期荷电状态估算精度。  相似文献   

16.
锂电池状态的准确估计,能够延长电池的使用寿命和减少安全事故的发生。为提高BP神经网络估计锂电池荷电状态的精度,提出一种使遗传粒子群算法有目的性的优化BP神经网络初始权值的改进方法。该算法引入K均值算法优化遗传粒子群算法初始粒子分布的随机性带来的误差问题,寻找BP神经网络算法初始权值的权重分配与输出误差的关系,在遗传粒子群算法随机产生的粒子群中进行最优粒子群选优,以降低误差。通过对采集到的18650型锂电池的充放电数据和未改进遗传粒子群算法优化的BP神经网络训练产生的200组BP神经网络的初始权值数据的研究分析,得到具有锂电池特性的BP神经网络的初始权值特征公式。并用MATLAB和FPGA联合仿真验证了改进BP神经网络方法的可行性。该方法也优化了遗传粒子群算法,减小了初值不确定带来的误差。  相似文献   

17.
针对安时积分( AH)法的累积误差问题和卡尔曼滤波算法对系统噪声的限制,提出了粒子滤波( PF)修正安时积分误差的方案,并基于钴酸锂电池测试数据和电池等效电路模型,对算法进行仿真验证。通过与传统的AH和卡尔曼滤波法对比得出:基于AH和PF修正的方法荷电状态( SOC)估计效果较好,平均误差与标准误差均控制在2%以内。  相似文献   

18.
Lithium-ion (Li-ion) battery state of charge (SOC) estimation is important for electric vehicles (EVs). The model-based state estimation method using the Kalman filter (KF) variants is studied and improved in this paper. To establish an accurate discrete model for Li-ion battery, the extreme learning machine (ELM) algorithm is proposed to train the model using experimental data. The estimation of SOC is then compared using four algorithms: extended Kalman filter (EKF), unscented Kalman filter (UKF), adaptive extended Kalman filter (AEKF) and adaptive unscented Kalman filter (AUKF). The comparison of the experimental results shows that AEKF and AUKF have better convergence rate, and AUKF has the best accuracy. The comparison from the radial basis function neural network (RBF NN) model also verifies that the ELM model has lighter computation load and smaller estimation error in SOC estimation process. In general, the performance of Li-ion battery SOC estimation is improved by the AUKF algorithm applied on the ELM model.  相似文献   

19.
基于模型的锂离子电池健康状态预测   总被引:1,自引:0,他引:1  
健康状态预测对于锂离子电池安全高效的使用至关重要。提出并建立了一种锂离子电池集总参数模型,在对模型的适应性验证的基础上,设计了一种粒子滤波算法来预测锂离子电池健康状态。通过对放电终止时间的仿真和实验表明,粒子滤波算法能对锂离子电池健康状态给出正确的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号