首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。  相似文献   

2.
刘宝  董明刚  敬超 《计算机应用》2018,38(8):2157-2163
针对多目标差分进化算法在求解问题时收敛速度慢和均匀性欠佳的问题,提出了一种改进的排序变异多目标差分进化算法(MODE-IRM)。该算法将参与变异的三个父代个体中的最优个体作为基向量,提高了排序变异算子的求解速度;另外,算法采用反向参数控制方法在不同的优化阶段动态调整参数值,进一步提高了算法的收敛速度;最后,引入了改进的拥挤距离计算公式进行排序操作,提高了解的均匀性。采用标准多目标优化问题ZDTl~ZDT4,ZDT6和DTLZ6~DTLZ7进行仿真实验:MODE-IRM在总体性能上均优于MODE-RMO和PlatEMO平台上的MOEA/D-DE、RM-MEDA以及IM-MOEA;在世代距离(GD)、反向世代距离(IGD)和间隔指标(SP)性能度量指标方面,MODE-IRM在所有优化问题上的均值和方差均明显小于MODE-RMO。实验结果表明MODE-IRM在收敛性和均匀性指标上明显优于对比算法。  相似文献   

3.
为实现热连轧精轧机组负荷分配的优化设定,提出一种具有柔性框架结构的改进型复杂过程全局进化算法.该算法部分地借用了分散搜索原则,在通用框架中嵌入具有搜索机制的子方法;利用无限折叠映射混沌模型和局部搜索法,分别对初始种群的生成和\"超越\"深度搜索进行改进以提高最优解的求解效率.实验结果表明,该算法能够使用较少的参数完成负荷分配优化问题的可行解搜索,具有较好的时效性,是局部和全局搜索的有机体.  相似文献   

4.
在求解热精轧负荷分配优化的过程中,针对目标函数中加权系数难以确定的问题,提出多目标反向迭代法(multi-objective inversion iteration algorithm,MOII),该法通过数值迭代的方式实现了热精轧机组负荷分配的多目标优化.首先,在综合考虑板形、板厚精度和质量的基础上,设计负荷分配优化的多目标函数;然后,基于轧制力能参数与轧机入口和出口板带厚度的单调性关系,设计MOII算法,并对MOII算法的合理性及异常情况进行分析,给出其计算流程;最后,基于实际生产数据进行仿真,结果表明,MOII算法不仅能够实现负荷分配的多目标优化,而且求解速度快、精度高,体现出良好的在线应用前景;与其他方法得到的解相比,MOII算法求得的解有更好的性能.  相似文献   

5.
针对多目标差分进化算法求解多目标优化问题时收敛慢和均匀性欠佳等不足,提出了一种基于多策略排序变异的多目标差分进化算法。该算法利用基于排序变异算子快速接近真实的Pareto最优解,同时引入多策略差分进化算子以保持算法的多样性和分布性。通过自适应策略,动态调整控制参数以提高算法的鲁棒性。从理论证明的角度分析了所提算法的收敛性。仿真实验结果表明,本文所提算法相对于近期相关文献中的改进算法具有更好的收敛性与多样性,从而表明了所提算法的有效性。  相似文献   

6.
宋通  庄毅 《计算机科学》2012,39(8):205-209
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。  相似文献   

7.
基于混合双种群差分进化的电力系统经济负荷分配   总被引:4,自引:1,他引:4  
针对电力系统经济负荷分配本质上的非线性约束优化问题,提出一种双种群混合差分进化算法.采用两个种群且以较小的计算量实现目标函数的寻优并保持解的可行性,同时引入单纯型法来提高算法的局部搜索能力.基于典型算例对该算法的进化行为进行测试,并通过仿真和比较验证了所提出算法的有效性.  相似文献   

8.
近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-II和SPEA2进行了对比实验。  相似文献   

9.
10.
基于空间距离的多目标差分进化算法*   总被引:1,自引:0,他引:1  
在经典差分进化的基础上,提出了一种基于空间距离的多目标差分进化算法(SD-MODE),与目前经典算法NSGA-Ⅱ和ε-MOEA 进行比较,结果表明该算法拥有良好的分布性,同时也较好地改善了收敛性。  相似文献   

11.
基于自适应交叉概率因子的差分进化算法及其应用   总被引:2,自引:0,他引:2  
基本差分进化算法的控制参数在进化过程中是保持不变的,但是交叉概率因子的大小影响种群进化的多样性以及种群的收敛速度.本文提出一种根据种群平均适应度方差非线性改变交叉概率因子的方法.在种群多样性降低时增大该因子,使之接受更多变异个体的基因,有利于加强局部搜索和加速收敛速率;多样性增大时减小该因子,避免该个体基因结构遭到过多的破坏,促使该个体的进化,有利于保持种群的多样性和完成全局搜索.并且给出了一种新的变异方式,这种变异方式一方面能提高算法的收敛速度,另一方面能在一定程度上保持较高的种群多样性.最后将其应用到热连轧精轧机组负荷分配优化中,改进后的优化方法在性能上要优于所对比算法.  相似文献   

12.
为解决基于帕累托(Pareto)支配解排序的多目标进化算法高时间复杂度问题,依据非支配解排序潜在特性,介绍了一种快速的非支配解排序方法,每次只处理当前种群中最高等级个体,且在分配等级的同时,能选择个体进入下一代,下一代被选足时即结束程序,减少了排序处理个体的数量,大幅度降低时间复杂度;另外,给出一种均匀的拥挤距离计算方法;最后,将快速非支配解排序和均匀拥挤距离计算与微分进化算法结合,提出基于非支配解排序的快速多目标微分进化算法(FMODE)。采用标准多目标优化问题ZDTl~ZDT4和ZDT6进行仿真实验:当种群个体较多(大于500)时,FMODE所用时间远小于NSGAⅡ;FMODE的总体性能上均优于经典的NSGAⅡ、SPEAⅡ和DEMO;在FMODE框架内,采用均匀拥挤距离在性能上也明显优于经典拥挤计算方法;并通过实验确定了FMODE算法的参数。实验结果表明FMODE能够减少计算等级时的处理时间,并在收敛性和多样性指标上明显优于对比算法。  相似文献   

13.
改进自适应变空间差分进化算法   总被引:5,自引:1,他引:5       下载免费PDF全文
在基本差分进化算法的基础上融入自适应变空间思想,提出自适应变空间差分进化算法,在进化代数达到预设周期整数倍时,按变空间算法自动扩展或收缩搜索空间,实现了自动寻找合适搜索空间、提高收敛速度和精度的目的.此外为了进一步的加快收敛速度,对原变空间算法进行了改造,对其上下限的变化规则进行了修改和添加,提出了改进的变空间算法.仿真结果表明改进方法在收敛精度、速度上优于基本差分进化算法和基于原变空间算法的差分进化算法.最后将其应用到热连轧机精轧机组负荷分配优化计算中,为其提供了一种有效的优化手段.  相似文献   

14.
针对当前算法在求解非线性方程组时面临解的个数不完整、精确度不高、收敛速度慢等问题进行了研究,提出一种多模态多目标差分进化算法。首先将非线性方程组转换为多模态多目标优化问题,初始化一个随机种群并对种群中全部个体进行评价;然后通过非支配解排序和决策空间拥挤距离选择机制,挑选种群中的一半优质个体进行变异;接着在变异过程中采用一种新的变异策略和边界处理方法以增加解的多样性;最后通过交叉和选择机制使优质个体进行进化,直到搜索到全部最优解。在所选测试函数集和工程实例上的实验结果表明,该算法能有效地搜索到非线性方程组的解,并通过与当前四个算法进行比较,该算法在解的数量和成功率上具有优越性。  相似文献   

15.
陈民铀  程杉 《控制与决策》2013,28(11):1729-1734

提出一种基于随机黑洞粒子群算法(RBH-PSO) 和逐步淘汰策略的多目标粒子群优化(MRBHPSO-SE) 算法. 利用RBH-PSO 全局优化能力强和收敛速度快的优点逼近Pareto 最优解; 为了避免拥挤距离排序策略的缺陷, 提出逐步淘汰策略, 并将其应用到下一代粒子的选择策略中. 同时, 动态选择领导粒子, 运用动态惯性权重系数和变异操作来增强种群全局寻优能力, 以及避免早熟收敛. 利用具有不同特点的测试函数进行验证, 结果表明, 与同类算法相比, 该算法具有较高的精度并兼顾优化解的多样性.

  相似文献   

16.
基于极大极小距离密度的多目标微分进化算法   总被引:15,自引:4,他引:15  
微分进化(differential evolution)是一种新的简单而有效的直接全局优化算法,并在许多领域得到了成功应用.提出了基于极大极小距离密度的多目标微分进化算法.新算法定义了极大极小距离密度,给出了基于极大极小距离密度的Pareto候选解集的维护方法,保证了非劣解集的多样性.并根据个体间的Pareto.支配关系和极大极小距离密度改进了微分进化的选择操作,保证了算法的收敛性,实现了利用微分进化算法求解多目标优化问题.通过对5个ZDT测试函数、两个高维测试函数的实验及与其他多目标进化算法的对比和分析,验证了新算法的可行性和有效性.  相似文献   

17.
为实现电网完全可观测,同时保证PMU(同步相量测量单元)的安装数日尽量少,且系统的N-1量测可靠性尽量高,笔者提出了一种混合算法,对电网中PMU进行多目标优化配置.在此算法中,通过将Pareto非劣排序操作与微分进化算法有机融合,并对个体的排挤机制和变异策略进行改进以克服进化早熟和搜索不均匀的问题,设计出了一种新的非劣排序微分进化算法对模型进行求解,并采用模糊集理论提取出最优折中解.最后以IEEE39母线系统为例进行了PMU多目标优化配置,结果表明该方法可简单快速地实现全局多目标寻优,找到更多更合理的PMU优化配置方案,能得到准确而完整的Pareto最优前沿.  相似文献   

18.
李贞  郑向伟  张辉 《计算机应用》2017,37(3):755-759
在虚拟网络映射中,多数研究只考虑一个映射目标,不能体现多方的利益。为此,将多目标算法和粒子群算法结合,提出了一种基于多目标粒子群优化(PSO)的虚拟网络映射算法(VNE-MOPSO)。首先,在基本的粒子群算法中引入交叉算子,扩大了种群优化的搜索空间;其次,在多目标优化算法中引入非支配排序、拥挤距离排序,从而加快种群的收敛;最后,以同时最小化成本和节点负载均衡度为虚拟网络映射目标函数,采用多目标粒子群优化算法求解虚拟网络映射问题(VNMP)。实验结果表明,采用该算法求解虚拟网络映射问题,在网络请求接受率、平均成本、平均节点负载均衡度、基础设施提供商的收益等方面具有优势。  相似文献   

19.
针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。  相似文献   

20.
NSGA-II中一种改进的分布性保持策略   总被引:1,自引:0,他引:1  
NSGA-II以其良好的收敛性和时间效率广泛应用于多目标优化中;然而其基于聚集距离的种群维护策略并不能很好地保持解集的分布性。提出一种改进的分布性保持策略;设置随种群密集程度自适应变化的阈值;动态地维护种群;使得分布性优秀的个体有更大的生存机会。与NSGA-II和ε-MOEA在5个测试函数上进行比较实验;结果表明改进算法在有效提高分布性的同时;拥有良好的收敛性。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号