首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal region of human cystatin C has been shown to be of crucial importance for the interaction of the inhibitor with cysteine proteinases. However, several studies have been unable to identify the corresponding region in bovine cystatin C, indicating that the binding of proteinases to the bovine inhibitor may not be dependent on this region. With the aim to resolve this apparent discrepancy and to elucidate the relation of bovine cystatin C to other cystatins, we have isolated a cDNA clone encoding bovine precystatin C. The sequence of this cDNA was similar to that of the human inhibitor and showed a putative signal peptidase cleavage site consistent with the N-terminal regions of the bovine and human inhibitors being of comparable size. This suggestion was verified by determination of the relative molecular mass of the mature bovine inhibitor isolated from cerebrospinal fluid under conditions minimising proteolysis. The N-terminal of the purified inhibitor was blocked, but the sequence of the N-terminal peptide produced by digestion with endopeptidase LysC could be unequivocally determined by tandem mass spectroscopy. Together, these results show that bovine cystatin C has 118 residues, in contrast with 110-112 residues reported previously, and has an N-terminal region analogous to that of human cystatin C. This region presumably is of similar importance for tight binding of target proteinases as in the human inhibitor.  相似文献   

2.
Clozapine and several other antipsychotic/antidepressant drugs that fully or partially block GABA(A) receptors were tested at concentrations that reversed the inhibitory effect of 1 microM GABA on 35S-t-butylbicyclophosphorothionate ([35S]TBPS) binding to rat forebrain membranes only about 20-30%, here designated "core" fractions. Clozapine at 10 microM reverses 1 microM GABA 25+/-4.0% (n = 23) (its "core" fraction). Fourty three compounds were tested alone, and pairwise together with 10 microM Clozapine. The "core" fractions of some of the compounds yielded significant additive reversals together with 10 microM Clozapine, while others did not. A group of 14 compounds of which 7 are clinically effective antipsychotic drugs, including Chlorprothixene, Clomacran, Clopipazan, Fluotracen, Sulforidazine, Thioproperazine, and cis-Thiothixene, were statistically non-additive with 10 microM Clozapine, suggesting that all of these drugs selectively block the same core population of GABA(A) receptors as Clozapine. These non-additivities also suggest that Clozapine at 10 microM fully saturates a subset of GABA(A) receptors blocked by 1 microM GABA. Therefore, Clozapine probably blocks 2 or more types of GABA(A)receptors, but only half of the receptors that are sensitive to 1 microM GABA. A second group of 12 compounds of which 6 are clinically active antidepressant/antipsychotic drugs including Amoxapine, Clothiapine, Dibenzepine, Inkasan (Metralindole), Metiapine and Zimelidine were slightly, but significantly, additive with Clozapine suggesting that these compounds block most of Clozapine's core fraction, plus a small additional fraction. A third group consisted of ten compounds that yielded larger (R > 80) and statistically highly significant additivities with Clozapine. Complete additivity was obtained with Bathophenanthroline disulfonate, and Isocarboxazid, suggesting that they block GABA(A) receptors other than those blocked by 10 microM Clozapine. Seven "classical" GABA(A) receptor blockers, also tested at concentrations yielding 21 to 33% reversal alone, were all significantly additive with 10 microM Clozapine, but in no case was the additivity complete. The largest additivity was obtained with Pitrazepine (21%) and the smallest with Tubocurarine (9%). These results provide further support for the notion that selective blockade of the same subset of GABA(A) receptors may contribute to the clinical antipsychotic/antidepressant effects of Clozapine. The deltaB(opt) values for Clozapine are 50+/-1.7% and 26+/-2.6% (n = 3) in whole rat forebrain and cerebellum, respectively, confirming that clozapine-sensitive GABA(A) receptors are unevenly distributed in the brain. The sedative and anxiolytic properties of Clozapine and other antipsychotic drugs may be due to selective blockade of GABergic disinhibition at certain interneurons.  相似文献   

3.
We have studied the properties of GABA responses in oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells derived from primary cultures of the neonatal rat brain. In whole cell voltage clamp recordings, rapid application of 1-10 mM GABA elicited current responses in > 85% of the cells examined. The dose-response relationship pooled from nine progenitor cells was best fit by a logistic function of EC50=113 microM and Hill coefficient=0.9. In contrast to the rate of current deactivation, the rate of current activation exhibited marked concentration-dependence. Pharmacologically, GABA, muscimol and ZAPA ((Z)-3[(aminiiminomethyl)thio]prop-2-enoic acid sulphate) produced responses with ligand-specific kinetics, whereas glycine and the GABA(C) receptor agonist CACA were without effect; bicuculline methochloride acted as a competitive antagonist. Neither the amplitude nor the kinetics of currents produced by 100 microM GABA were affected by the benzodiazepine flunitrazepam (1 microM). Similarly the benzodiazepine receptor inverse agonist DMCM (1 microM) was also without effect. GABA-activated currents reversed polarity within 2 mV of the calculated Cl- equilibrium potential. With brief agonist pulses deactivation was monoexponential, however, unlike neurones the rate of deactivation was voltage-independent. Desensitisation of responses to 10 mM GABA was bi-exponential and accelerated at depolarised membrane potentials. Increasing the amount of GABA(A) receptor desensitisation (by increasing the duration of the agonist exposure) consistently produced a slowing of deactivation.  相似文献   

4.
At inhibitory synapses in the mature neocortex and hippocampus in vitro, spontaneous action-potential-dependent and -independent release of gamma-aminobutyric acid (GABA) activates postsynaptic GABA(A) receptors but not pre- or postsynaptic GABA(B) receptors. Elevation of synaptic GABA levels with pharmacological agents or electrical stimulation can cause activation of GABA(B) receptors, but the physiological conditions under which such activation occurs need further elucidation. In rodent sensorimotor cortex, epinephrine produced a depression in the amplitude of evoked monosynaptic inhibitory postsynaptic currents (IPSCs) and a concomitant, adrenoceptor-mediated increase in the frequency of spontaneous IPSCs. Blockade of GABA(B) receptors prevented the depression of evoked IPSC amplitude by epinephrine but did not affect the increase in spontaneous IPSC frequency. These data show that adrenoceptor-mediated increases in spontaneous IPSCs can cause activation of presynaptic GABA(B) receptors and indirectly modulate impulse-related GABA release, presumably through elevation of synaptic GABA levels.  相似文献   

5.
Isoflurane anesthesia exhibits stereoselectivity, and a corresponding stereoselectivity ((+)->(-)-isomer) has been reported at GABA(A) receptors in vitro. The objective of the present study was to determine if the positive modulatory actions of halothane at GABA(A) receptors exhibited a similar stereoselectivity. Both (R)- and (S)-halothane ((+)- and (-)- isomers, respectively) enhanced [3H]flunitrazepam binding to brain membranes in a concentration dependent manner without a significant difference in either potency (EC50) or efficacy (Emax). While both (R)- and (S)-halothane enhanced [3H]muscimol binding, the potency of the (+)-isomer was slightly greater than the corresponding (-)-isomer (0.91 +/- 0.17 versus 1.45 +/- 0.04% atmospheres, respectively (P < 0.02)). Thus, subtle structural differences between inhalational anesthetics can have a significant impact on the degree of stereoselectivity at the receptor level and may provide insights for the development of more specific drugs.  相似文献   

6.
BACKGROUND: Potentiation of the activity of the gamma-aminobutyric acid type A (GABA(A)) receptor channel by volatile anesthetic agents is usually studied in vitro at room temperature. Systematic variation of temperature can be used to assess the relevance of this receptor to general anesthesia and to characterize the modulation of its behavior by volatile agents at normal body temperature. METHODS: Potentiation of the GABA(A) receptor by halothane, sevoflurane, isoflurane, and methoxyflurane was studied at six temperatures in the range 10-37 degrees C using the whole-cell patch-clamp technique and mouse fibroblast cells stably transfected with defined GABA(A) receptor subunits. RESULTS: Control GABA concentration-response plots showed small and physically reasonable changes in the GABA concentration required for a half-maximal effect, the Hill coefficient, and maximal response over the range 10-30 degrees C. Potentiations of GABA (1 microM) responses by aqueous minimum alveolar concentrations of the volatile anesthetic agents decreased with increasing temperature from 10-37 degrees C in an agent-specific manner (methoxyflurane > isoflurane > sevoflurane > halothane) but tended to equalize at normal body temperature (37 degrees C). These findings are in line with published results on the temperature dependence of anesthetic potencies in animals. CONCLUSIONS: These results are consistent with direct binding of volatile anesthetic agents to the GABA(A) receptor channel playing an important role in general anesthesia. The finding that the degree of anesthetic potentiation was agent-specific at low temperatures but not at 37 degrees C emphasizes the importance of doing in vitro experiments at normal body temperature.  相似文献   

7.
Chronic intermittent ethanol (CIE)-treated rats exhibited a kindling-like persistent increase in withdrawal hyperexcitability. The alteration of GABA(A) receptor (GABA(A)R) function in the hippocampus was suggested as a possible mechanism underlying the hyperexcitability observed in CIE rats, because (1) GABA(A)R agonist (muscimol)-evoked 36Cl- efflux was decreased; (2) paired-pulse inhibition in the CA1 area, predominantly due to GABA(A)R-mediated recurrent inhibition, was persistently decreased; and (3) GABA(A)R subunit expression was altered in the hippocampus from CIE rats. To further characterize the functional alteration of GABA(A)R after CIE treatment, their sensitivity to acute ethanol, a steroid anesthetic (alphaxalone), and a benzodiazepine inverse agonist (DMCM; methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) were studied using either synaptically evoked GABA(A)R responses or exogenously applied muscimol-evoked responses in hippocampal slices. Bath application of ethanol (60 mM) enhanced the area of GABA(A)R-mediated inhibitory postsynaptic potentials in the hippocampal CA1 region from control and CIE rats, and this potentiation was significantly (p = 0.027) greater in CIE rats (98%) than in control rats (53%). The positive modulatory effect of alphaxalone (1 microM) on GABA(A)R-inhibitory postsynaptic potentials was not significantly different between control and CIE rats (p = 0.375), whereas alphaxalone allosterically increased [3H]flunitrazepam binding in the CA1 area only in CIE rats (by 20 to 25%, p < 0.01), but not in controls. On the other hand, the negative modulatory effect of DMCM (1 microM) on muscimol-evoked responses was significantly larger in CIE rats (p = 0.002). These results suggest that the sensitization of GABA(A)R to acute ethanol and benzodiazepine inverse agonists, and possibly neurosteroids, may underlie ethanol dependence after multiple ethanol withdrawal episodes. These altered pharmacological properties are most consistent with changes in the subunit composition in the CA1 area of this rat model of alcohol dependence.  相似文献   

8.
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was examined in the cranial sensory ganglia and brainstem of the banded dogfish, Triakis scyllia. Positive neurons were found in the vagal sensory ganglion projecting to the coelomic organs, but not in those projecting to the gills or the lateral line organs. Nerve terminals in the vagal lobe were also positive. No positive neurons were found in the glossopharyngeal, facial, or trigeminal sensory ganglia. These results suggest that use of nitric oxide in the vagal sensory transmission from the coelomic organs may have been maintained in the evolutionary process from fish to mammals.  相似文献   

9.
We investigated the possible association between delta and gamma2 subunits in native GABA(A) receptors, from different rat brain regions, using subunit-specific anti-delta and anti-gamma2 antibodies. Previous reports have provided somewhat controversial results, indicating both the presence and the absence of association between these two subunits in native receptors. Our results indicate the absence of co-localization between delta and gamma2 subunits. In immunoprecipitation experiments, anti-delta antibody consistently immunoprecipitated [3H]muscimol binding activity (GABA binding sites) from all brain areas tested (10-20% of the total binding). However, under the same conditions, no significant [3H]flumazenil or [3H]ethyl 8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5-a]-[1,4]benzodiazepine- 3-carboxylate (Ro15-4513) binding (benzodiazepine binding sites) activity was detected in the immunopellets. These results indicate the absence of association between delta and gamma2 subunits. This question was directly addressed by immunopurification and Western blot experiments. As expected, no gamma2 subunits were detected in anti-delta immunoaffinity purified receptors. Conversely, no delta subunits were identified in anti-gamma2 immunopurified receptors. Thus, these results demonstrate the absence of association between delta and gamma2 subunits in native GABA(A) receptors. Finally, our results also indicate the relevance of the solubilization conditions on the apparent association between different subunits of the native GABA(A) receptor complex.  相似文献   

10.
The recently cloned GABA(B) receptors were localized in rat retina using specific antisera. Immunolabelling was detected in the inner and outer plexiform layers (IPL, OPL), and in a number of cells in the inner nuclear layer and the ganglion cell layer. Double-labelling experiments for GABA (gamma-aminobutyric acid) and GABA(B) receptors, respectively, demonstrated a co-localization in horizontal cells and amacrine cells. Electron microscopy showed that GABA(B) receptors of the OPL were localized presynaptically in horizontal cell processes invaginating into photoreceptor terminals. In the IPL, GABA(B) receptors were present presynaptically in amacrine cells, as well as postsynaptically in amacrine and ganglion cells. The postnatal development of GABA(B) receptors was also studied, and immunoreactivity was observed well before morphological and synaptic differentiation of retinal neurons. The present results suggest a presynaptic (autoreceptor) as well as postsynaptic role for GABA(B) receptors. In addition, the extrasynaptic localization of GABA(B) receptors could indicate a paracrine function of GABA in the retina.  相似文献   

11.
The principal inhibitory neurotransmitter GABA (gamma-aminobutyric acid) exerts its effects through two ligand-gated channels, GABA(A) and GABA(C) receptors, and a third receptor, GABA(B) , which acts through G proteins to regulate potassium and calcium channels. Cells heterologously expressing the cloned DNA encoding the GABA(B)R1 protein exhibit high-affinity antagonist-binding sites, but they produce little of the functional activity expected from studies of endogenous GABA(B) receptors in the brain. Here we describe a new member of the GABA(B) polypeptide family, GABA(B)R2, that shows sequence homology to GABA(B)R1. Neither GABA(B)R1 nor GABA(B)R2, when expressed individually, activates GIRK-type potassium channels; however, the combination of GABA(B)R1 and GABA(B)R2 confers robust stimulation of channel activity. Both genes are co-expressed in individual neurons, and both proteins co-localize in transfected cells. Moreover, immunoprecipitation experiments indicate that the two polypeptides associate with each other, probably as heterodimers. Several G-protein-coupled receptors (GPCRs) exist as high-molecular-weight species, consistent with the formation of dimers by these receptors, but the relevance of these species for the functioning of GPCRs has not been established. We have now shown that co-expression of two GPCR structures, GABA(B)R1 and GABA(B)R2, belonging to the same subfamily is essential for signal transduction by GABA(B) receptors.  相似文献   

12.
Volatile anaesthetics have historically been considered to act in a nonspecific manner on the central nervous system. More recent studies, however, have revealed that the receptors for inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are sensitive to clinically relevant concentrations of inhaled anaesthetics. The function of GABA(A) and glycine receptors is enhanced by a number of anaesthetics and alcohols, whereas activity of the related GABA rho1 receptor is reduced. We have used this difference in pharmacology to investigate the molecular basis for modulation of these receptors by anaesthetics and alcohols. By using chimaeric receptor constructs, we have identified a region of 45 amino-acid residues that is both necessary and sufficient for the enhancement of receptor function. Within this region, two specific amino-acid residues in transmembrane domains 2 and 3 are critical for allosteric modulation of both GABA(A) and glycine receptors by alcohols and two volatile anaesthetics. These observations support the idea that anaesthetics exert a specific effect on these ion-channel proteins, and allow for the future testing of specific hypotheses of the action of anaesthetics.  相似文献   

13.
Modification of synaptic strength in the mammalian central nervous system (CNS) occurs at both pre- and postsynaptic sites. However, because postsynaptic receptors are likely to be saturated by released transmitter, an increase in the number of active postsynaptic receptors may be a more efficient way of strengthening synaptic efficacy. But there has been no evidence for a rapid recruitment of neurotransmitter receptors to the postsynaptic membrane in the CNS. Here we report that insulin causes the type A gamma-aminobutyric acid (GABA[A]) receptor, the principal receptor that mediates synaptic inhibition in the CNS, to translocate rapidly from the intracellular compartment to the plasma membrane in transfected HEK 293 cells, and that this relocation requires the beta2 subunit of the GABA(A) receptor. In CNS neurons, insulin increases the expression of GABA(A) receptors on the postsynaptic and dendritic membranes. We found that insulin increases the number of functional postsynaptic GABA(A) receptors, thereby increasing the amplitude of the GABA(A)-receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) without altering their time course. These results provide evidence for a rapid recruitment of functional receptors to the postsynaptic plasma membrane, suggesting a fundamental mechanism for the generation of synaptic plasticity.  相似文献   

14.
Lipoprotein (a) [Lp(a)] is synthesised by liver cells, and patients with liver cirrhosis (LC) show low serum levels of Lp(a) associated with the degree of liver failure. On the contrary, increased serum levels of Lp(a) have been reported in patients with cancer. In this report, the behaviour of Lp(a) serum levels in patients with hepatocarcinoma (HC), a complication of LC, has been evaluated with the aim to study whether HC cells were able to cause an increase of serum concentrations of this lipoprotein when impaired liver protein synthesis is present. We selected eighteen patients affected by LC + HC, eighteen patients matched for sex, age and degree of liver failure with LC only, and eighteen patients with other cancer types. A significant increase of serum levels of Lp(a) was observed in patients affected by LC + HC or other cancer types compared with healthy subjects. Forty-four percent of LC + HC patients showed Lp(a) values more than 70.4 Units/dl, i.e., the upper limit of values observed in patients with LC only. Lp(a) serum concentrations were significantly associated with serum albumin both in LC and in LC + HC but not in other cancer-type patients. Thus, comparing patients with similar serum albumin concentrations, Lp(a) serum levels were significantly higher in patients with LC + HC than in patients with only LC and quite similar to those observed in patients with other cancer types. In conclusion, HC cells, in vivo, seem able to produce a greater amount of Lp(a) despite the reduced liver protein synthesis typical of LC.  相似文献   

15.
The release of cholecystokinin-like immunoreactivity (CCK-LI) in human brain was investigated using synaptosomes prepared from neocortical specimens removed during neurosurgery. CCK-LI basal release from superfused synaptosomes was increased 3 to 4-fold during depolarization with 15 mM KCI. The K(+)-evoked overflow of CCK-LI was strictly Ca(++)-dependent. The gamma-aminobutyric acidB (GABA(B)) receptor agonist (-)baclofen (0.3-100 microM) inhibited CCK-LI overflow in a concentration-dependent manner (EC50 = 2.20 microM; maximal effect: 45%). The novel GABA(B) receptor ligand CGP 47656 mimicked (-)baclofen (EC50 = 2.45 microM; maximal effect: 50%), whereas the GABA(A) agonist muscimol was ineffective up to 100 microM. The inhibitory effect of 10 microM (-)baclofen on the CCK-LI overflow was concentration-dependently prevented by two selective GABA(B) receptor antagonists, CGP 35348 (IC50 = 13.91 microM) and CGP 52432 (IC50 = 0.08 microM). The effect of 10 microM CGP 47656 was abolished by 1 microM CGP 52432. In experiments on [3H]GABA release, CGP 47656 behaved as an antagonist at the GABA(B) autoreceptors: added at 10 microM, it prevented the inhibitory effect of 10 microM (-)baclofen on the K+ (15 mM)-evoked release of [3H]GABA from human synaptosomes. We conclude that 1) the release of CCK-LI evoked from human brain tissue appears of neuronal origin; 2) the CCK-releasing terminal possess inhibitory presynaptic GABA(B) receptors; 3) these receptors differ pharmacologically from human neocortex GABA(B) autoreceptors, which are CGP 35348-insensitive (Fassio et al., 1994) but can be blocked by CGP 47656; 4) because cholecystokinin has been implicated in anxiety, the GABA(B) receptors here characterized may represent targets for novel anxiolytic agents.  相似文献   

16.
The effect of long-term adrenalectomy on NMDA receptors in the rat hippocampus was studied. Hippocampal sections of control and adrenalectomized rats were incubated with [3H]MK-801, a radiolabeled non-competitive inhibitor of the NMDA receptor. Analysis by in vitro autoradiography showed a significant decrease in [3H]MK-801 binding in the dentate gyrus, CA1 and CA4 areas, as well as the temporal cortex. Results of this study suggest that glucocorticoids are vital for the regulation of the NMDA receptors.  相似文献   

17.
The AT1 receptor is one of the two receptor subtypes able to bind angiotensin II. In the present study, immunohistochemical examination of the distribution of the AT1 receptor in several limbic structures of female rats has been done, revealing new aspects of the distribution of AT1-positive cells. The presence of AT1 receptor expressing cells in the hippocampus and the amygdala is described, but their distribution in these regions has not been examined in a detailed way. We found some notable differences in the distribution of these cells: in female rats, we detected high amounts of labeled cells in the hippocampus, the entorhinal cortex and piriform cortex. In somewhat lower amounts, stained cells could be found in several nuclei of the amygdala (in the basomedial, basolateral, lateral, central and medial nucleus of the amygdala, in the amygdalopiriform transition area and in the amygdalohippocampal transition area as well as in the bed nucleus of the stria terminalis).  相似文献   

18.
We investigated the effects of the cholinergic agonist carbachol (25 microM) on the synaptic potentials recorded extracellularly and intracellularly from the CA3 area of immature hippocampal slices of the rat (postnatal days 10-20). In control conditions, carbachol reduced the amplitude of evoked synaptic responses (n=8) and did not induce any spontaneous synchronous activity (n=12); the depressant effect of carbachol was mimicked by acetylcholine (100 microM, in eserine 10 microM, n=5) and was reversed by the muscarinic antagonist atropine (1 microM, n=2). The GABA(A)-receptor antagonist bicuculline (10 microM) enhanced the amplitude and duration of the evoked synaptic responses and induced infrequent (0.016-0.045 Hz) spontaneous synchronous discharges in 23/37 of the slices. Application of carbachol in the presence of bicuculline reduced the amplitude of the evoked synaptic responses (n=21) and in addition induced synchronous discharges with rates of occurrence 0.075-0.225 Hz, in 64/68 slices. Both effects were mimicked by acetylcholine and eserine, and antagonized by atropine. The specific muscarinic antagonists pirenzepine (M1-type), tripitramine (M2-type), 4-diphenylacetoxy-N-methylpiperidine methiodide (M3-type) and tropicamide (M4-type) (all tested at 0.1-1 microM) reversibly reduced the frequency of synchronous carbachol-induced discharges. In addition, these discharges were reversibly blocked by high Ca2+ perfusion medium (7 mM CaCl2, n=4) and by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM, n=7). Synchronous epileptiform discharges were recorded from both CA1 and CA3 areas in intact slices (n=3), but only from CA3 following disruption of the CA1-CA3 synaptic connections (n=3). These experiments suggest that activation of muscarinic receptors during blockade of GABA(A)-mediated potentials, may enhance synchronous epileptiform activity in immature (postnatal days 10-20) hippocampus, through activation of local excitatory circuits and that endogenous acetylcholine may be sufficient to play this role.  相似文献   

19.
Enzymes are increasingly being used to perform regio- and enantioselective reactions in chemoenzymatic syntheses. To utilize enzymes for unphysiological reactions and to yield novel products, a broad substrate spectrum is desirable. Thiamin diphosphate (ThDP)-dependent enzymes vary in their substrate tolerance from rather strict substrate specificity (phosphoketolases, glyoxylate carboligase) to more permissive enzymes (transketolase, dihydroxyacetone synthase, pyruvate decarboxylase) and therefore differ in their potential to be used as biocatalysts. We give an overview of the known substrate spectra of ThDP-dependent enzymes and present examples of multi-enzyme or chemoenzymatic approaches which involve ThDP-dependent enzymes as biocatalysts to obtain pharmaceutical compounds as ephedrine and glycosidase inhibitors, sex pheromones as exo-brevicomin, 13C-labeled metabolites, and other intermediates as 1-deoxyxylulose 5-phosphate, a precursor of vitamins and isoprenoids.  相似文献   

20.
The characteristics of the cerebral GABA(B) receptor/cyclic AMP (cAMP)-generating system were investigated using the in vivo microdialysis technique in freely moving rats. Addition of forskolin, an activator of adenylate cyclase, to perfusate for 20 min resulted in a dose-dependent increase of cAMP efflux from the striatum. Pre- and coinfusions of baclofen for 80 min had no effect on the basal efflux of cAMP from the striatum but induced a significant decrease of forskolin (10 microM)-stimulated cAMP efflux from the striatum in a dose-dependent manner. SKF 97541 (100 microM), a GABA(B) receptor agonist, and GABA (50 microM) also decreased forskolin-induced cAMP efflux from the striatum. Coinfusion of CGP 54626A (100 microM), a GABA(B) receptor antagonist, counteracted the effect of baclofen on the forskolin-stimulated cAMP efflux. In contrast, the isoproterenol (5 mM)-induced increase of cAMP efflux from the striatum was significantly enhanced by pre- and coinfusions with baclofen. These results suggest that this test system using in vivo microdialysis may be useful for examining the effect of drugs on the GABA(B) receptor-linked cAMP-generating system in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号