首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金属有机骨架化合物(MOFs)是由有机配体和金属节点通过自组装形成的一类具有周期性结构和较大比表面积的材料。目前,选择MOFs材料作为前驱体,经高温焙烧合成纳米金属氧化物或纳米复合金属氧化物材料是一大研究热点。综述了近年来以Co基配位聚合物为前驱体制备纳米Co_3O_4或Co_3O_4/碳纳米复合材料的方法,以及Co_3O_4纳米材料在锂离子电池负极材料、超级电容器、电催化析氧反应、气敏材料及催化剂材料等研究领域的应用,并对其今后的发展进行了展望。  相似文献   

2.
We report a general strategy for synthesis of a large variety of metal oxide nanoparticles on different carbon nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, and a few-layer graphene. The approach was based on the π-π interaction between CNMs and modified aromatic organic ligands, which acted as bridges connecting metal ions and CNMs. Our methods can be applicable for a large variety of metal ions, thus offering a great potential application.  相似文献   

3.
金属有机框架化合物(Metal-organic frameworks,简称MOFs)是由金属离子(或簇)与有机配体配位并经由自组装而形成的一类多孔材料[1]。MOFs具有极其发达的孔道结构,比表面积和孔容远超其他多孔材料。有机/无机杂化这一特点也赋予了MOFs其他材料(例如沸石、活性炭等)所不具备的无限结构功能可调性[2]。此外,MOFs具有移除客体分子而主体框架完好保持的持久孔道或孔穴,这使得MOFs具有超乎寻常的化学及物理稳定性。正是基于以上这些特点,MOFs在许多领域有着丰富的应用[3-4],例如催化[5]、H2储存[6]、CO2捕集[7]、药物运输[8]、污染物吸附[9]、生物医学成像[10]等方面。MOFs的商业化探索成为了目前的热点。MOFs的很多应用都与可持续发展及“绿色材料”有关,但MOFs本身的合成过程也需要考虑可持续性和环境影响。金属有机化学所面临的环境挑战是独特的,因为它将金属离子、有机配体的危害联系在一起,且合成过程大多需要大量能耗。主要介绍了金属有机框架材料的绿色可持续合成,主要分为4个方面:1)使用更安全或生物相容性的配体;2)使用更绿色、低成本的金属源;3)绿色溶剂的开发;4)无溶剂合成法。  相似文献   

4.
Fine ultrahigh‐temperature ceramic (UHTC) powders have found very important applications in many fields. In this work, a facile high‐temperature spray pyrolysis (HTSP) approach is implemented for the synthesis of HfC and TaC UHTC nanopowders starting from organic solvent (e.g., ethanol or 1‐pentanol) solutions of metal precursors (HfCl4 or TaCl5). It is proposed that, during HTSP, the precursor solution droplets would continuously undergo rapid drying, thermolysis (i.e., removal of low molecular weight species such as H2, H2O, and CO), and finally in situ carbothermal reduction (CTR) process to give rise to metal carbide nanopowders. The as‐obtained materials are shown by SEM as uniform and separated nanoparticles (~90 nm), whereas TEM reveals the carbide (e.g., HfC) nanoparticles are actually even smaller (~10‐20 nm) and embedded in amorphous carbon from excess solvent decomposition. It is found that among different processing parameters, the organic solvent used and the metal precursor concentration could largely influence the formation of metal carbide. In addition, lower HTSP temperatures (≤~1500°C for HfC) only lead to oxide‐carbon mixtures while higher temperatures (≥~1650°C) promote carbide formation. The HTSP method developed in this work is simple, low‐cost and efficient, and could potentially be optimized further for future large‐scale manufacturing of ultrafine UHTC nanopowders.  相似文献   

5.
介孔金属有机框架材料(介孔MOFs)相较于传统吸附剂具有孔径大、孔隙率可调、比表面积大、官能团丰富,便于功能化改性修饰等优点,可高效地吸附水体中重金属污染物。本文介绍介孔MOFs的特性、合成策略及四种合成介孔MOFs的方法,重点分析四种方法的介孔形成机理及其所面临的问题,并将四种合成方法的优劣进行了比较。详述介孔MOFs吸附去除水中重金属离子、类重金属阴离子以及放射性金属离子的研究进展;介绍了介孔MOFs在吸附去除重金属离子方面的可重复利用性;阐述介孔MOFs吸附去除水中重金属污染物的作用机理。对介孔MOFs成本高昂、合成条件苛刻、回收利用难等问题提出了优化方向,指出提高介孔MOFs的水稳定性、易回收利用、简便绿色合成技术以及痕量去除将是未来的研究方向。  相似文献   

6.
《Ceramics International》2023,49(4):5936-5943
Numerous clean energy systems rely on the oxygen evolution process (OER), which takes place during water splitting reaction. For this purpose, transition-metal oxides have garnered considerable attentions as a prominent OER electrocatalysts. In present study, we fabricate the nanosheet arrays of metal oxide/carbon (MOx/C; M = Fe, Ag, and Mn) fabricated via hydrothermal route. As templates, this approach employs the covered 2-dimensional (2D) metal-organic frameworks (2D-MOFs), and these MOx/C arrays made from 2D MOFs exhibit significant electrocatalytic activity and durability. Among all, Ag2O/C showed the overpotentials of 270 mV at a current density (j) of 10 mA cm?2, while the tafel slope is 45 mV dec?1, that is lower than other metal oxide-based catalysts like MnO/C, and Fe2O3/C. It also shows 48 h high stability due to the conductive nature, larger surface area and the presence of carbon cage for easy transfer of electrons. The conceptual framework and synthetic strategy employed in this study can be applied to create more multi-metal oxide anchoring Ag2O carbon matrix-based electrocatalysts that are extremely efficient, affordable, and perform significantly better in OER and other future applications.  相似文献   

7.
Zhu J  Zhu T  Zhou X  Zhang Y  Lou XW  Chen X  Zhang H  Hng HH  Yan Q 《Nanoscale》2011,3(3):1084-1089
We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.  相似文献   

8.
臭氧分解催化剂的制备及性能研究   总被引:8,自引:0,他引:8  
用浸渍法制备了活性炭负载的复合金属氧化物催化剂并研究了其对臭氧的分解活性。在比较了MnO2、 Co3O4、 NiO、Fe2O3、CuO等氧化物的基础上进行了复合金属氧化物/活性炭催化剂的臭氧分解活性试验,结果发现Mn-Cu系催化剂的活性高和寿命长,并且成本较低,具有良好的工业应用前景。  相似文献   

9.
An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO2/graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO2 or PtRu nanoparticles. The as-synthesized SnO2/graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.  相似文献   

10.
赵东升 《化工进展》2021,40(2):1035-1047
金属有机骨架(MOFs)晶体由无机金属离子和有机配体通过自组装合成,具有高的孔隙率和可调节的窗口尺寸,可使MOFs混合基质膜在水处理时同步获得高通量和高截留率,有望突破传统分离膜的渗透性和选择性之间此消彼长的trade-off效应。本文综述了MOFs的典型构造、影响MOFs混合基质膜性能的关键因素、MOFs混合基质膜的制备方法、MOFs颗粒改善混合基质膜水传输和溶质分离性能的原理以及MOFs混合基质膜在水处理微滤/超滤、纳滤/反渗透和正渗透领域的最新研究进展。最后总结了MOFs混合基质膜在水处理领域的未来发展亟待解决的关键问题,主要包括高性能、低成本膜的可控制备、膜结构和性能之间定量构效关系的深入探索以及如何拓宽其应用范围等,对加快MOFs混合基质膜的产业化进程具有指导意义。  相似文献   

11.
Silicon coated with a thin film of cobalt [Si/Co (10 nm)] is exposed to the plasma generated using CH4–H2 gas mixture by making a discharge between Si/Co substrates and Mo bent plate in pulsed discharge plasma chemical vapor deposition. At high plasma temperature and deposition pressure, carbon nanocapsules encapsulating Co nanoparticles are observed to form. They are investigated using high resolution transmission electron microscopy, scanning electron microscopy, visible Raman spectroscopy and X-ray diffraction. Present study indicates that the formation mechanism of carbon nanocapsules lie in the sputtering of Co thin film by the energetic ions from plasma at high deposition pressure which results in the formation of Co nanoparticles, on surface of which graphitic layers gets deposited at high plasma temperature. Present approach provides a novel strategy for the synthesis of high purity carbon nanocapsules encapsulating metal nanoparticles.  相似文献   

12.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   

13.
A novel method for the simultaneous formation of catalytic active metal nanoparticles, multiwall carbon nanotubes (MWCNTs) and/or turbostratic carbon and porous M@SiCN (M = Fe, Co, Pt, Cu, Ag, Au) ceramics during pyrolysis of metal modified polysilazanes and polyethylene (PE) particles as sacrificial filler is described. The thermal decomposition of the polyethylene leads not only to the generation of the porosity but also to an in situ reduction of the metal compounds to the metal nanoparticles, due to the reductive atmosphere. Depending on the metal, carbon nanotubes as well as turbostratic carbon were formed in different amounts, due to the chemical vapor deposition (CVD) like conditions. The resulting carbon phases, ceramics and metal nanoparticles were investigated using the combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) measurements, giving evidence for the presence of the carbon phases and the metal particles.  相似文献   

14.
We report a generic strategy to make hybrids incorporating metal nanoparticles and carbon nanosupports with large surface area, which is a one-step, universal approach totally free of additives and by-products. Utilizing this approach, we show that small Au, Ag and Pd nanoparticles of uniform size can be self-assembled on diverse carbon nanostructures such as graphene oxide, reduced graphene oxide, and multiwalled carbon nanotubes by simply sputtering metal onto room-temperature ionic liquids. The size of metal nanoparticles can be controlled by the composition of room-temperature ionic liquids, and the surface density of metal nanoparticles can be controlled by the sputtering conditions. The self-assembly is demonstrated to be driven by the interlinking interactions among the metal nanoparticles, ionic liquid cations and carbon nanostructures.  相似文献   

15.
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.  相似文献   

16.
Ultrafine metal particle-supported carbon particles were synthesized by pyrolysis of polymer particle–metal ions such as Co(II), Ni(II), Cu(II), Ag, Pd(II), and Rh(III) complexes. The sizes of metal particles increased with increasing pyrolysis temperature. Pd and Rh particles were on the whole smaller than were Co, Ni, and Cu, even though the amounts of Pd and Rh ions immobilized were higher. Rh particles supported on carbon particles exhibited high catalytic activity for the decomposition of hydrogen peroxide. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The decomposition of nitrous oxide to nitrogen and oxygen using a series of monolithic (ceria-alumina washcoated cordierite) supported transition metal (Cu, Fe, Co, Ni, Mn) and noble metal (Ir, Rh) oxide catalysts has been studied using gas chromatography. The effect of combining a transition metal with a noble metal has also been investigated. A synergetic effect was observed between transition metal and noble metal oxides in the presence of a small amount of water for some of the catalysts. The synergy between Fe-Ir and Ni-Ir was also verified under dry conditions. X-ray photoelectron spectroscopic measurements on these catalysts indicate that Fe, Rh and Ir are present predominantly as Fe2O3, RhO2 and IrO2, while significant amounts of Co and Ni ions may migrate inside the support to form cobalt and nickel aluminate. Only the Fe-Ir catalyst showed a significant interaction between the noble metal and the transition metal. The effect of water, oxygen and carbon monoxide on the catalytic behaviour of the five most active catalysts (Ni-Ir, Ni-Rh, Fe-Ir, Co-Ir, Ir) has also been investigated. Oxygen and water were found to inhibit the catalytic activity, although the extent of oxygen inhibition is limited, presumably due to the presence of ceria in the monolith washcoat support. Conversely, carbon monoxide greatly enhances catalytic activity.  相似文献   

18.
We produced carbon hybrid materials of graphene sheets decorated with metal or metal oxide nanoparticles of gold, silver, copper, cobalt, or nickel from cation exchanged graphite oxide. Measurements using powder X-ray diffraction, transmission electron microscopy, and X-ray absorption spectra revealed that the Au and Ag in the materials (Au–Gr and Ag–Gr) existed on graphene sheets as metal nanoparticles, whereas Cu and Co in the materials (Cu–Gr and Co–Gr) existed as a metal oxide. Most Ni particles in Ni–Gr were metal, but the surfaces of large particles were partly oxidized, producing a core–shell structure. The Ag–Gr sample showed a catalytic activity for the oxygen reduction reaction in 1.0 M KOH aq. under an oxygen atmosphere. Ag–Gr is superior as a cathode in alkaline fuel cells, which should not be disturbed by the methanol cross-over problem from the anode. We established an effective approach to prepare a series of graphene-nanoparticle composite materials using heat treatment.  相似文献   

19.
Metal ion desorbed crosslinked N,N‐bis(2‐aminoethyl)polyacrylamides showed enhanced specificity for the desorbed metal ion, and these polymers selectively rebind the desorbed metal ion from a mixture of metal ions. For this, polyacrylamide with 8 mol % divinylbenzene (DVB) and N,N′‐methylene‐bisacrylamide (NNMBA) crosslinking were prepared by solution polymerization. Diethylenetriamino functions were incorporated into the polymers by polymer analogous reactions. The complexing ability of the amino polymers were investigated toward various transition metal ions like Co(II), Ni(II), Cu(II), and Zn(II). Polymeric ligand and metal complexes were characterized by various spectral methods. The removal of the metal ion from the polymer matrix resulted in a memory for the desorbed metal ion. On rebinding, these polymers specifically rebind the desorbed metal ion and from a mixture of metal ions, it showed selectivity to the desorbed metal ion. Thus, the Cu(II) desorbed polymer specifically and selectively rebind Cu(II) ion from a mixture of Cu(II) and other metal ion. This selectivity is higher in the rigid DVB‐crosslinked system, resulting from the high rigidity of the crosslinked matrix compared to the semirigid NNMBA‐crosslinked system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
锌/钴双金属氰化络合物催化环氧丙烷聚合机理   总被引:2,自引:0,他引:2  
用以二乙二醇二乙醚为有机配体的锌/钴双金属氰化络合物进行了环氧丙烷的聚合,并用扩展X射线精细结构分析方法研究了催化剂激活和环氧丙烷聚合过程中锌离子和钴离子的区域结构变化。结果表明,锌/钴双金属氰化络合物催化环氧丙烷的聚合是一个活性聚合体系。在环氧丙烷聚合过程中锌离子由与3.0个氧原子配位转变为与5.7个氧原子配位,表明聚合活性中心为5.0个氧原子配位的螯合锌离子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号