首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Liu M  Li X  Karuturi SK  Tok AI  Fan HJ 《Nanoscale》2012,4(5):1522-1528
Atomic layer deposition (ALD) provides a tool for conformal coating on high aspect-ratio nanostructures with excellent uniformity. It has become a technique for both template-directed nanofabrications and engineering of surface properties. This Feature Article highlights the application of ALD in selected fields including photonics, SERS and energy materials. Specifically, the topics include fabrication of plasmonic nanostructures for the SERS applications, fabrication of 3-D nanoarchitectured photoanodes for solar energy conversions (dye-sensitized solar cells and photoelectrochemical cells), and coating of electrodes to enhance the cyclic stability and thus device life span of batteries. Dielectric coating for tailoring optical properties of semiconductor nanostructures is also discussed as exemplified by ZnO nanowires. Future direction of ALD in these applications is discussed at the end.  相似文献   

2.
Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a result of field coupling. A universal scaling model, relating the plasmon resonance frequency to the interparticle distance in terms of the particle size, becomes potentially useful for measuring nanoscale distances (and their changes) in biological systems. The strong plasmon absorption and photothermal conversion of gold nanoparticles has been exploited in cancer therapy through the selective localized photothermal heating of cancer cells. For nanorods or nanoshells, the LSPR can be tuned to the near-infrared region, making it possible to perform in vivo imaging and therapy. The examples of the applications of noble metal nanostructures provided herein can be readily generalized to other areas of biology and medicine because plasmonic nanomaterials exhibit great range, versatility, and systematic tunability of their optical attributes.  相似文献   

3.
Owing to their unique properties and potential applications in nanoelectronics, graphene and its derivatives have received extensive attention over the last decade. Noble metal nanostructures, on the other hand, enable the confinement and manipulation of light at the nanoscale. Integration of nanocarbons and plasmonic nanostructures is expected to result in synergistic optoelectronic properties that can potentially revolutionize the design and fabrication of optoelectronic devices. In this letter, we demonstrate a simple self-assembly approach to achieve synergistic ensemble of plasmonic gold nanostars and graphene oxide. Gold nanostars are directly nucleated and grown on the surface of graphene oxide by in situ reduction method producing differential surface charged hybrid macroanionic sheets, which are then kinetically rolled and simultaneously assembled into high aspect ratio hybrid nanorolls by means of the interplay of kinetics and graphene–gold interactions.  相似文献   

4.
This work is mainly focused on studies combining plasmonic nanostructures and π‐conjugated systems. It describes active molecular plasmonic devices in which π‐conjugated molecules and polymers, grafted on gold nanoparticles, are used to tune the plasmonic properties of metal nanostructures. It also explores two emerging research fields, i.e. plasmonic electrochemistry and plasmonic molecular electronics. In the former, electrochemical reactions are controlled and triggered by plasmons which yield various light‐induced electrochemical reactions at the nanoscale. In the latter, one combines molecular plasmonics and molecular electronics in plasmonic molecular devices. © 2018 Society of Chemical Industry  相似文献   

5.
《Ceramics International》2021,47(23):32685-32698
Three dimensional (3D) plasmonic nanostructures composed of silver nanoparticles decorated ZnO NRs arrays, have been fabricated by a process combining the electrochemical growth of ZnO NRs and further formation of Ag nanoparticles by the solid-state thermal dewetting (SSD) process. The effect of SSD parameters on the morphological, structural and optical properties of the Ag NPs decorated ZnO NRs arrays has been investigated. It is possible to tune the bandgap of the Ag NPs@ZnO nanorods array 3D plasmonic nanostructure by tailoring the Ag nanoparticle sizes, allowing light manipulation at the nanoscale. The silver nanoparticles attached to the ZnO NRs arrays experienced surface plasmonic coupling effect, causing enhancement in the room temperature photoluminescence (PL) UV emission and quenching the corresponding visible light one. An enhancement in the near band edge emission PL intensity of ZnO to the deep level emission PL intensity ratio after Ag NPs decoration of the ZnO nanostructures corresponding to ca. 11 folds has been observed, indicating that the defect emission is obviously suppressed.  相似文献   

6.
Surface-enhanced Raman scattering (SERS), with greatly amplified fingerprint spectra, holds great promise in biochemical and biomedical research. In particular, the possibility of exciting a library of SERS probes and differentially detecting them simultaneously has stimulated widespread interest in multiplexed biodetection. Herein, recent progress in developing SERS-active plasmonic nanostructures for cellular and intracellular detection is summarized. The development of nanosensors with tailored plasmonic and multifunctional properties for profiling molecular and pathological processes is highlighted. Future challenges towards the routine use of SERS technology in quantitative bioanalysis and clinical diagnostics are further discussed.  相似文献   

7.
Gold nanocages: from synthesis to theranostic applications   总被引:1,自引:0,他引:1  
Gold nanostructures have garnered considerable attention in recent years for their potential to facilitate both the diagnosis and treatment of cancer through their advantageous chemical and physical properties. The key feature of Au nanostructures for enabling this diverse array of biomedical applications is their attractive optical properties, specifically the scattering and absorption of light at resonant wavelengths due to the excitation of plasmon oscillations. This phenomenon is commonly known as localized surface plasmon resonance (LSPR) and is the source of the ruby red color of conventional Au colloids. The resonant wavelength depends on the size, shape, and geometry of the nanostructures, providing a set of knobs to manipulate the optical properties as needed. For in vivo applications, especially when optical excitation or transduction is involved, the LSPR peaks of the Au nanostructures have to be tuned to the transparent window of soft tissues in the near-infrared (NIR) region (from 700 to 900 nm) to maximize the penetration depth. Gold nanocages represent one class of nanostructures with tunable LSPR peaks in the NIR region. These versatile nanostructures, characterized by hollow interiors and ultrathin, porous walls, can be prepared in relatively large quantities using a remarkably simple procedure based on the galvanic replacement between Ag nanocubes and aqueous chloroauric acid. The LSPR peaks of Au nanocages can be readily and precisely tuned to any wavelength in the NIR region by controlling their size, wall thickness, or both. Other significant features of Au nanocages that make them particularly intriguing materials for biomedical applications include their compact sizes, large absorption cross sections (almost five orders of magnitude greater than those of conventional organic dyes), and their bio-inertness, as well as a robust and straightforward procedure for surface modification based on Au-thiolate chemistry. In this Account, we present some of the most recent advances in the use of Au nanocages for a broad range of theranostic applications. First, we describe their use as tracers for tracking by multiphoton luminescence. Gold nanocages can also serve as contrast agents for photoacoustic (PA) and mutimodal (PA/fluorescence) imaging. In addition, these nanostructures can be used as photothermal agents for the selective destruction of cancerous or diseased tissue. Finally, Au nanocages can serve as drug delivery vehicles for controlled and localized release in response to external stimuli such as NIR radiation or high-intensity focused ultrasound (HIFU).  相似文献   

8.
One-dimensional nanostructures such as ZnTe, CdTe, Bi(2)Te(3) and others have attracted much attention in recent years for their potential in thermoelectric devices among other applications. A better understanding of their mechanical properties is important for the design of devices. A combined experimental and computational approach has been used here to investigate the size effects on the Young's modulus of ZnTe nanowires (NWs). The mechanical properties of individual ZnTe nanowires in a wide diameter range (50-230 nm) were experimentally measured inside a high resolution transmission electron microscope using an atomic force microscope probe with the ability to record in situ continuous force-displacement curves. The in situ observations showed that ZnTe NWs are flexible nanostructures with the ability to withstand relatively high buckling forces without becoming fractured. The Young's modulus is found to be independent of nanowire diameter in the investigated range, in contrast to reported results for ZnO NWs and carbon nanotubes where the modulus increases with a decrease in diameter. Molecular dynamics simulations performed for nanowires with diameters less than 20 nm show limited size dependence for diameters smaller than 5 nm. The surface atoms present lower Young's modulus according to the simulations and the limited size dependency of the cylindrical ZnTe NWs is attributed to the short range covalent interactions.  相似文献   

9.
Biosynthesis of metal and semiconductor nanoparticles using microorganisms has emerged as a more eco-friendly, simpler and reproducible alternative to the chemical synthesis, allowing the generation of rare forms such as nanotriangles and prisms. Here, we report the endophytic fungus Aspergillus clavatus, isolated from surface sterilized stem tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions produces a diverse mixture of intracellular gold nanoparticles (AuNPs), especially nanotriangles (GNT) in the size range from 20 to 35 nm. These structures (GNT) are of special interest since they possess distinct plasmonic features in the visible and IR regions, which equipped them with unique physical and optical properties exploitable in vital applications such as optics, electronics, catalysis and biomedicine. The reaction process was simple and convenient to handle and was monitored using ultraviolet–visible spectroscopy (UV–vis). The morphology and crystalline nature of the GNTs were determined from transmission electron microscopy (TEM), atomic force spectroscopy (AFM) and X-ray diffraction (XRD) spectroscopy. This proposed mechanistic principal might serve as a set of design rule for the synthesis of anisotropic nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

10.
Plasmonic nanostructures: artificial molecules   总被引:1,自引:0,他引:1  
This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model.  相似文献   

11.
We reveal the significance of plasmonic nanoparticle’s (NP) shape and its surface morphology en route to an efficient self-assembled plasmonic nanoparticle cluster. A simplified model is simulated in the form of free-space dimer and trimer nanostructures (NPs in the shape of a sphere, cube, and disk). A ~200% to ~125% rise in near-field strength (gap mode enhancement) is observed for spherical NPs in comparison with cubical NPs (from 2 nm to 8 nm gap sizes). Full-width three-quarter maximum reveals better broad-spectral optical performance in a range of ~100 nm (dimer) and ~170 nm (trimer) from spherical NPs as compared to a cube (~60 nm for dimer and trimer). These excellent properties for sphere-based nanostructures are merited from its dipole mode characteristics.  相似文献   

12.
Synthesis of the core/shell-structured Fe3O4/Au nanoparticles by trapping Fe3O4 inside hollow Au nanoparticles is described. The produced composite nanoparticles are strongly magnetic with their surface plasmon resonance peaks in the near infrared region (wavelength from 700 to 800 nm), combining desirable magnetic and plasmonic properties into one nanoparticle. They are particularly suitable for in vivo diagnostic and therapeutic applications. The intact Au surface provides convenient anchorage sites for attachment of targeting molecules, and the particles can be activated by both near infrared lights and magnetic fields. As more and more hollow nanoparticles become available, this synthetic method would find general applications in the fabrication of core–shell multifunctional nanostructures.  相似文献   

13.
Kar A  Patra A 《Nanoscale》2012,4(12):3608-3619
This feature article highlights the new development and current status of rare-earth (RE) based core-shell nanocrystals, which is one of the new classes of hybrid nanostructures. Attractive properties of rare-earth based nanomaterials include extremely narrow emission bands, long lifetimes, large Stoke's shifts, photostability and absence of blinking that can be exploited for biophotonic and photonic applications. Core-shell nanostructures have been attracting a great deal of interest to improve the luminescence efficiency by the elimination of deleterious cross-relaxation. The main focus of this feature article is to address the impacts of core-shell structures on the properties of lanthanide based nanocrystals including crystal phase, lattice strain, downconversion emission, upconversion emission and energy transfer. We describe general synthetic methodologies to design core-shell nanostructure materials. An interesting finding reported is that the local environment of an ion in the core-shell structure significantly affects the modifications of radiative and nonradiative relaxation mechanisms. Finally, a tentative outlook on future developments of this research field is given. Here, we attempt to identify the critical parameters governing the design of luminescent lanthanide based core-shell nanostructures.  相似文献   

14.
Transition metal hexacyanoferrate (MeHCF) have attracted extensive attention because of their outstanding properties including, electrocatalysis, molecular magnetism, biosensing and ion-exchange. This paper describes an approach for fabrication of ordered nanoarrays of Ni hexacyanoferrate (NiHCF) structures with different morphologies such as dots, rods and tubes in order to advance their properties and applications. The method is based on the conversion of Ni into NiHCF nanostructures by electrochemical oxidation in the presence of hexacyanoferrate ions, using nanoporous anodic alumina oxide (AAO) as a template. The structure and morphology of formed Ni and NiHCF nanoarrays were confirmed by scanning electron microscopy (SEM), showing agreement with the pore structures of the AAO template. The electrocatalytic activity of NiHCF nanorod array electrodes showed high catalytic properties for the detection of hydrogen peroxide and the potential to be used as a platform for direct biosensing applications. The ion-exchange ability of fabricated NiHCF nanostructures (nanorods and nanotubes) toward alkali cations such as Na+ has been successfully confirmed.  相似文献   

15.
《Ceramics International》2020,46(14):22330-22337
A systematic approach has been introduced to synthesize Cd–Zn co-doped NiO nanostructures with different ratios such as Cd0.07Zn0.03NiO, Cd0.05Zn0.05NiO, Cd0.03Zn0.07NiO and Cd0.01Zn0.09NiO for supercapacitor applications. The XRD studies has confirmed the phase purity with average crystallite size of 40 nm. The SEM characterization has shown that the morphology of nanostructures was tuned from particles to nano-rods structure with increasing the at. % concentration of Zn doping. Optical properties revealed that band gap and recombination rate have strong co-relation with specific capacitance. The CV results have confirmed the pseudocapacitive nature of the as prepared nanostructures and maximum specific capacitance (1485.19 Fg-1) was measured for Cd0.03Zn0.07NiO which is superior than numerous reported values of NiO. The GCD results of Cd0.03Zn0.07NiO performed at 1 A/g scan rate, exhibited excellent charging-discharging ability with high cyclic retention of 82.8%. High capacitance and superior stability of Cd0.03Zn0.07NiO material indicate it as a potential candidate for supercapacitor applications.  相似文献   

16.
The authors study plasmonic enhancements of photoluminescence (PL) in Si nanodisk (ND) arrays hybridized with nanostructures such as nanoplates of Au, where these hybrid nanostructures are fabricated by fully top-down lithography: neutral-beam etching using bio-nano-templates and high-resolution electron-beam lithography. The separation distance between the Si ND and Au nanostructure surfaces is precisely controlled by inserting a thin SiO2 layer with a thickness of 3 nm. We observe that PL intensities in the Si NDs are enhanced by factors up to 5 depending on the wavelength by integrating with the Au nanoplates. These enhancements also depend on the size and shape of the Au nanoplates.  相似文献   

17.
Zinc oxide (ZnO) has been known as the next most important material for the fabrication of efficient nanodevices and nanosystems because of its versatile properties such as semiconducting, piezoelectric, and pyroelectric multiple properties. In this review, the state-of-the-art technologies related to the synthesis and characterization, the selective growth of ZnO nanostructures, and their applications for nanodevices are discussed. A special concern is focused on the controlled selective growth of ZnO nanostructures on wanted areas of substrates, which is crucial factor for devices applications. The device applications of ZnO nanostructures include field effect transistors (FETs), field-emission devices, piezoelectric nanogenerators, biosensors, p-n heterjunction diodes such as light-emitting diodes and photovoltaic cells, and so on.  相似文献   

18.
Efficient delivery of light into nanoscale volumes by converting free photons into localized charge-density oscillations (surface plasmons) enables technological innovation in various fields from biosensing to photovoltaics and quantum computing. Conventional plasmonic nanostructures are designed as nanoscale analogs of radioantennas and waveguides. Here, we discuss an alternative approach for plasmonic nanocircuit engineering that is based on molding the optical powerflow through 'vortex nanogears' around a landscape of local phase singularities 'pinned' to plasmonic nanostructures. We show that coupling of several vortex nanogears into transmission-like structures results in dramatic optical effects, which can be explained by invoking a hydrodynamic analogy of the 'photon fluid'. The new concept of vortex nanogear transmissions (VNTs) provides new design principles for the development of complex multi-functional phase-operated photonics machinery and, therefore, generates unique opportunities for light generation, harvesting and processing on the nanoscale.  相似文献   

19.
Low-dimensional carbon nanostructures, such as nanotubes and graphenes, represent one of the most promising classes of materials, in view of their potential use in nanotechnology. However, their exploitation in applications is often hindered by difficulties in their synthesis and purification. Despite the huge efforts by the research community, the production of nanostructured carbon materials with controlled properties is still beyond reach. Nonetheless, this step is nowadays mandatory for significant progresses in the realization of advanced applications and devices based on low-dimensional carbon nanostructures. Although promising alternative routes for the fabrication of nanostructured carbon materials have recently been proposed, a comprehensive understanding of the key factors governing the bottom-up assembly of simple precursors to form complex systems with tailored properties is still at its early stages. In this paper, following a survey of recent experimental efforts in the bottom-up synthesis of carbon nanostructures, we attempt to clarify generalized criteria for the design of suitable precursors that can be used as building blocks in the production of complex systems based on sp(2) carbon atoms and discuss potential synthetic strategies. In particular, the approaches presented in this feature article are based on the application of concepts borrowed from traditional organic chemistry, such as valence-bond theory and Clar sextet theory, and on their extension to the case of complex carbon nanomaterials. We also present and discuss a validation of these approaches through first-principle calculations on prototypical systems. Detailed studies on the processes involved in the bottom-up fabrication of low-dimensional carbon nanostructures are expected to pave the way for the design and optimization of precursors and efficient synthetic routes, thus allowing the development of novel materials with controlled morphology and properties that can be used in technological applications.  相似文献   

20.
《Ceramics International》2020,46(5):5507-5520
ZnO is a unique semiconductor that used for various applications. The preparation method, crystal morphology and particle size have important role in its physical properties. This article reviews the structural, morphology and optical properties of zinc oxide nanostructures grown up by different synthesis methods. The effect of adding various impurities which categorized by periodic table groups, on its structural and optical properties have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号