首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even without access to the electrical grid, a flow-through sampler (FTS) can collect gaseous and particle-bound semivolatile organic compounds (SOCs) from large volumes of air by turning into the wind and having the wind blow through a porous sampling medium. To test its performance under field conditions, a FTS and a traditional pumped high volume air sampler, both using polyurethane foam (PUF) as sampling medium, were codeployed at the campus of the University of Toronto Scarborough from August 2006 to June 2007. Quantitative relationships between the wind speed outside the sampler and after passage through the PUF were established and allow the accurate estimation of sampling volumes under conditions of low and high wind speed. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were quantified in the samples taken by both air samplers. Separate analysis of seven PUF disks arranged sequentially within the FTS, confirm that even relatively volatile SOCs do not experience serious break-through. Theoretical plate number analysis of the break-through curves yields an understanding of the effect of temperature and wind speed on FTS sampling efficiency, and reveals different behavior of gaseous and particle-bound-compounds on the PUF. Air concentrations of PCBs and PAHs obtained with the FTS compare favorably with those obtained by averaging the concentrations of several 24 h active high volume samples taken during the same time period.  相似文献   

2.
Polyurethane foam (PUF) disk passive air samplers were evaluated under field conditionsto assessthe effect of temperature and wind speed on the sampling rate for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs). Passive samples integrated over 28-day periods were compared to high-volume air samples collected for 24 h, every 7 days. This provided a large data set of 42 passive sampling events and 168 high-volume samples over a 3-year period, starting in October 2003. Average PUF disk sampling rates for gas-phase chemicals was approximately 7 m3 d(-1) and comparable to previous reports. The high molecular weight PAHs, which are mainly particle-bound, experienced much lower sampling rates of approximately 0.7 m3 d(-1). This small rate was attributed to the ability of the sampling chamber to filter out coarse particles with only the fine/ultrafine fraction capable of penetration and collection on the PUF disk. Passive sampler-derived data were converted to equivalent air volumes (V(EQ), m3) using the high-volume air measurement results. Correlations of V(EQ) against meteorological data collected on-site yielded different behavior for gas- and particle-associated compounds. For gas-phase chemicals, sampling rates varied by about a factor of 2 with temperature and wind speed. The higher sampling rates at colder temperatures were explained bythe wind effecton sampling rates. Temperature and wind were strongly correlated with the greatest winds at coldertemperatures. Mainly particle-phase compounds (namely, the high molecular weight PAHs) had more variable sampling rates. Sampling rates increased greatly atwarmertemperatures as the high molecular weight PAH burden was shifted toward the gas phase and subject to higher gas-phase sampling rates. At colder temperatures, sampling rates were reduced as the partitioning of the high molecular weight PAHs was shifted toward the particle phase. The observed wind effect on sampling for the particle-phase compounds is believed to be tied to this strong temperature dependence on phase partitioning and hence sampling rate. For purposes of comparing passive sampler derived data for persistent organic pollutants, the factor of 2 variability observed for mainly gas-phase compounds is deemed to be acceptable in many instances for semiquantitative analysis. Depuration compounds may be used to improve accuracy and provide site-specific sampling rates, although this adds a level of complexity to the analysis. More research is needed to develop and test passive air samplers for particle-associated chemicals.  相似文献   

3.
A novel passive air sampler was designed and tested that individually collects the gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) in air. The sampler was calibrated against a conventional active sampler in an indoor environment. A PUF (polyurethane foam) disk and a piece of GFF (glass fiber filter) were installed in a sampling shelter for collecting gaseous and particulate phase PAHs, respectively. The passive samplers were deployed in seven indoor locations for 86 days. Six times during this period, 24-h conventional active sampling was conducted for calibration at an average interval of 17-days. Principle component analysis showed that the measured congener profile compositions were totally different between the gaseous and particulate phase PAHs, but similar between the passive and the active samples. This suggested that gaseous and particulate phase PAHs were primarily trapped by the PUF disk and GFF, respectively. Linear relationships between the passively and the actively measured and log-transformed concentrations were derived for calibration of both gaseous and particulate phase PAHs. The uptake rates of the sampler were 0.10 +/- 0.014 m3/d and 0.007 +/- 0.001 m3/d for gaseous and particulate phase PAHs, respectively. The rates were significantly lower than those reported in the literature using similar PUF samplers, mainly because of the special design with limited air circulation.  相似文献   

4.
As part of continued efforts under the Global Atmospheric Passive Sampling (GAPS) Network to develop passive air samplers applicable to a wide-range of compounds, sorbent-impregnated polyurethane foam (SIP) disk samplers were codeployed and tested against conventional polyurethane foam (PUF) disk samplers. The SIP disk sampler has a higher sorptive capacity compared to the PUF disk sampler, due to its impregnation with ground XAD resin. The two sampler types were codeployed at 20 sites during the 2009, 3-month long spring sampling period of the GAPS Network. Air concentrations for chlordanes (trans-chlordane, cis-chlordane, and trans-nonachlor) and endosulfans (endosulfan I, endosulfan II, and endosulfan sulfate) derived from PUF disk and SIP disk samplers showed near 1:1 agreement and confirmed previous results for polychlorinated biphenyls (PCBs). Discrepancies observed for α-HCH and γ-HCH in PUF disk versus SIP disk are attributed to lack of "comparability" of the PUF and SIP data sets, due to differences in effective air sampled by the two devices caused by saturation of these higher volatility compounds in the lower capacity PUF disk samplers. Analysis of PBDEs in PUF and SIP disks showed relatively good agreement but highlighted challenges associated with high blanks levels for PBDEs. The higher capacity SIP disk samplers allowed for the analysis of pentachlorobenzene (PeCBz) and hexachlorobenzene (HCBz) and revealed a relatively uniform global distribution of these compounds. The results of this study further validate the SIP disk sampler as a complement to the PUF disk sampler, with capabilities for a broad range of POPs targeted under international POPs treaties such as the Stockholm Convention on POPs and its Global Monitoring Plan.  相似文献   

5.
A flow-through sampler (FTS) was codeployed with a super high volume active sampler (SHV) between October 2007 and November 2008 to evaluate its ability to determine the ambient concentrations of pesticides and brominated flame retardants in the Canadian High Arctic atmosphere. Nine pesticides and eight flame retardants, including three polybrominated diphenyl ether (PBDE) replacement chemicals, were frequently detected. Atmospheric concentrations determined by the two systems showed good agreement when compared on monthly and annually integrated time scales. Pesticide concentrations were normally within a factor of 3 of each other. The FTS tended to generate higher PBDE concentrations than the SHV presumably because of the entrainment of blowing snow/ice crystals or large particles. Taking into account uncertainties in analytical bias, sample volume, and breakthrough estimations, the FTS is shown to be a reliable and cost-effective method, which derives seasonally variable concentrations of semivolatile organic trace compounds at extremely remote locations that are comparable to those obtained by conventional high volume air sampling. Moreover, the large sampling volumes captured by the FTS make it suitable for the screening of new and emerging chemicals in the remote atmosphere where concentrations are usually low.  相似文献   

6.
Passive air samplers (PAS) are simple and cost-effective tools to monitor semivolatile organic compounds in air. Chemical uptake occurs by molecular diffusion from ambient air to a passive sampling medium (PSM). Previous calibration studies indicate that even for the same type of PAS, passive air sampling rates (R, m(3)(air)/d) can be highly variable due to the influence of a number of factors. Earlier studies mainly focused on factors (e.g., wind speed and temperature) influencing R via the kinetic resistance posed by the air boundary layer surrounding the PSM because that layer was deemed to be the main factor determining the uptake kinetics. Whereas recent calibration studies suggest that the PAS configuration can influence R, so far few studies have specifically focused on this factor. In this study, with the objective to understand the effect of PAS configurations on R, we applied a gravimetrical approach to study the kinetics of water vapor uptake from indoor air by silica gel placed inside cylindrical PAS of various configurations. We also conducted an indoor calibration for polychlorinated biphenyls on the same type of PAS using XAD-resin as the PSM. R was found to be proportional to the interfacial transfer area of the PSM but not the amount of the PSM because chemicals mainly accumulated in the outer layer of the PSM during the deployment time of the PAS. The sampler housing and the PSM can introduce kinetic resistance to chemical uptake as indicated by changes in R caused by positioning the PSM at different distances from the opening of the sampler housing and by using PSM of different diameters. Information gained from this study is useful for optimizing the PAS design with the objective to reduce the material and shipping costs without sacrificing sampling efficiency.  相似文献   

7.
Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.  相似文献   

8.
The accumulation of persistent organic pollutants by three passive sampling media--semipermeable membrane devices (SPMDs), polyurethane foam (PUF) disks, and an organic-rich soil--was investigated. The media were exposed to contaminated indoor air over a period of 450 days, and concentrations in the air and in the media were monitored for individual polychlorinated biphenyl (PCB) congeners and polychlorinated naphthalene homologue groups. Uptake was initially linear and governed by the surface area of the sampler and the boundary layer airside mass transfer coefficient (MTC). Mean values of the MTC were 0.13, 0.11, and 0.26 cm s-1 for SPMD, PUF, and soil, respectively. As the study progressed, equilibrium was established between ambient air and the passive sampling media for the lower molecular weight PCB congeners. This information was used to calculate passive sampler-air partition coefficients, KPSM-A. These were correlated to the octanol-air partition coefficient, and the resulting regressions were used to predict KPSM-A for the full suite of PCBs. Information on MTC, KPSM-A, surface area, and effective thickness of each sampler was used to estimate times to equilibrium for each medium. These ranged from tens of days for the lower molecular weight congeners to tens of years for the higher molecular weight PCBs. Expressions were also developed to relate the amount of chemical accumulated by the passive sampling media to average ambient air concentrations over the integration period of the sample.  相似文献   

9.
Current theory of the uptake of semivolatile organic compounds in passive air samplers (PAS) assumes uniform chemical distribution and no kinetic resistance within the passive sampling media (PSM) such as polystyrene-divinylbenzene resin (XAD) and polyurethane foam (PUF). However, these assumptions have not been tested experimentally and are challenged by some recently reported observations. To test the assumptions, we performed kinetic uptake experiments indoors using cylindrical PSM that had been concentrically segmented into three layers. Both XAD and PUF were positioned in the same type of sampler housing to eliminate the variation caused by the different housing designs, which enabled us to quantify differences in uptake caused by the properties of the PSM. Duplicated XAD (PUF) samples were retrieved after being deployed for 0, 1 (0.5), 2 (1), 4 (2), 8 (4), 12 (8), and 24 (12) weeks. Upon retrieval, the PSM layers were separated and analyzed individually for PCBs. Passive sampling rates (R) were lower for heavier PCB homologues. Within a homologue group, R for XAD was higher than that for PUF, from which we infer that the design of the "cylindrical can" housing typically used for XAD PAS lowers the R compared to the "double bowl" shelter commonly used for PUF-disk PAS. Outer layers of the PSM sequestered much higher levels of PCBs than inner layers, indicative of a kinetic resistance to chemical transfer within the PSM. The effective diffusivities for chemical transfer within PSM were derived and were found negatively correlated with the partition coefficients between the PSM and air. Based on the results, we conclude that the PSM-side kinetic resistance should be considered when investigating factors influencing R and when deriving R based on the loss of depuration compounds.  相似文献   

10.
The precision, accuracy, and sampling rates of Radiello and Ogawa passive samplers were evaluated in the laboratory using a flow-through chamber and under field conditions prior to their use in the 2007 Harbor Community Monitoring Study (HCMS), a saturation monitoring campaign in the communities adjacent to the Ports of Los Angeles and Long Beach. Passive methods included Radiello samplers for volatile organic compounds (benzene, toluene, ethylbenzene, xylenes, 1,3-butadiene), aldehydes (formaldehyde, acetaldehyde, acrolein) and hydrogen sulfide, and Ogawa samplers for nitrogen oxides and sulfur dioxide. Additional experiments were conducted to study the robustness of the passive sampling methods under variable ambient wind speed, sampling duration, and storage time before analysis. Our experimentally determined sampling rates were in agreement with the rates published by Radiello and Ogawa with the following exceptions: we observed a diffusion rate of 22.4 ± 0.1 mL/min for benzene and 37.4 ± 1.5 mL/min for ethylbenzene compared to the Radiello published values of 27.8 and 25.7 mL/min, respectively. With few exceptions, the passive monitoring methods measured one-week average ambient concentrations of selected pollutants with sensitivity and precision comparable to conventional monitoring methods averaged over the same period. Radiello Carbograph 4 VOC sampler is not suitable for the collection of 1,3-butadiene due to backdiffusion. Results for the Radiello aldehyde sampler were inconclusive due to lack of reliable reference methods for all carbonyl compounds of interest.  相似文献   

11.
Few data are available on the ammonia emissions of large-scale outdoor animal facilities in arid climates such as those found in California's San Joaquin Valley. Passive samplers provide an ideal tool for studying such large and heterogeneous area sources, because they are inexpensive, portable, and fully self-contained. UC Davis passive ammonia samplers incorporate modifications on a previous design, the Willems Badge, for ease of analysis. Citric acid was chosen as a coating medium though it performed as well as oxalic, sulfuric, and tartaric acids. Zefluor PTFE prefilters were used instead of Teflo though both showed the same resistance to diffusion. Citric acid-coated filters were stable for up to 10 weeks, though more so if stored in Petri dishes rather than in the sampling cassettes themselves. The most effective sampler position was found to be in a face-down configuration fixed into the wind to avoid debris and sensitivity to wind shifts. A new method of rinsing the filters within the cassettes by dropwise elution proved highly effective, with 85% of the ammonium being removed in the first 3 mL of the 10-mL rinse volume. Application of the sampler at a dairy in the Joaquin Valley revealed large variations in concentrations at different locations along the downwind fenceline, which correlated with animal populations and activities directly upwind. In addition, large variations in ammonia concentrations were observed in relation to time of day and animal activity. Field blank loadings were of 1.40 microg NH4-N/filter (SD = 0.74 microg NH4-N/filter). Replicate passive samplers placed side-by-side during sampling episodes agreed with a slope of 1.010 (standard error = 0.028). Impingers were used as a reference method to obtain the correlation between filter loadings and air concentrations, yielding an "effective sampling rate" for the passive samplers of 6.18 L/h (error = 0.23 L/h). Using a theoretical calculation, that "effective flow rate" was calculated to be 6.29 L/h. The method's limit of detection was found to be 82.5 microg NH4-N/m3. Wind speed was found to theoretically affect linearity of sampler response only for speeds less than 0.92 m/s.  相似文献   

12.
Air was sampled for one year in the central valley of Costa Rica using an active high-volume sampler as well as passive samplers (PAS) based on polyurethane foam (PUF) disks and XAD-resin filled mesh cylinders. Extracts were analyzed for pesticides that are either banned or currently used in Costa Rican agriculture. Sampling rates for PUF-based passive air samplers, determined from the loss of depuration compounds spiked on the disks prior to deployment averaged 5.9 +/- 0.9 m3 x d(-1) and were higher during the windier dry season than during the rainy season. Sampling rates for the XAD-based passive sampler were determined from the slopes of linear relationships that were observed between the amount of pesticide sequestered in the resin and the length of deployment, which varied from 4 months to 1 year. Those sampling rates increased with decreasing molecular size of a pesticide, and their average of 2.1 +/- 1.5 m3 x d(-1) is higher than rates previously reported for temperate and polar sampling sites. Even though the trends of the sampling rate with molecular size and temperature are consistent with the hypothesis that molecular diffusion controls uptake in passive samplers, the trends are much more pronounced than a direct proportionality between sampling rate and molecular diffusivity would suggest. Air concentrations derived by the three sampling methods are within a factor of 2 of each other, suggesting that properly calibrated PAS can be effective tools for monitoring levels of pesticides in the tropical atmosphere. In particular, HiVol samplers, PUF-disk samplers, and XAD-based passive samplers are suitable for obtaining information on air concentration variability on the time scale of days, seasons and years, respectively. This study represents the first calibration study for the uptake of current use pesticides by passive air samplers.  相似文献   

13.
Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD < 2%. Also, the empirical formulas developed to predict flow rate given a specified diameter and capillary length were found to predict flow rate within 6% of the experimental data. The samplers were exposed to a variety of airborne vapors that allowed for comparison of the effectiveness of capillary flow controllers to sorbent samplers and to an online gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.  相似文献   

14.
Measurement of particle-bound organic carbon (OC) may be complicated by sampling artifacts such as adsorption of gas-phase species onto particles or filters or evaporation of semivolatile compounds off the particles. A denuder-based integrated organic gas and particle sampler (IOGAPS), specifically designed to minimize sampling artifacts, has been developed to sample atmospheric carbonaceous aerosols. IOGAPS is designed to first remove gas-phase chemicals via sorption to the XAD-coated denuder, and subsequently particles are trapped on a quartz filter. A backup sorbent system consisting of sorbent- (XAD-4 resin) impregnated filters (SIFs) was used to capture the semivolatile OC that evaporates from the particles accumulated on the upstream quartz filter. A traditional filter pack (FP) air sampler, which uses a single quartz filter to collect the particles, was employed for comparison in this study. Elemental and organic carbon were determined from filter punches by a thermal optical transmittance aerosol carbon analyzer. Field measurements show that there was no significant difference between the elemental carbon concentrations determined by the FP and IOGAPS, indicating that particle loss during the transit through the denuder tube was negligible. Compared with the OC determined by FP (3.9-12.6 microg of C/m3), the lower OC observed on the quartz filter in the IOGAPS (2.2-6.0 microg of C/m3) was expected because of the removal of gas-phase organics by the denuder. Higher semivolatile organic carbon (SVOC) on the backup SIFs during the night (1.24-8.43 microg of C/m3) suggests that more SVOC, emitted from primary sources or formed as secondary organic compounds, partitions onto the particles during the night because of the decreased ambient temperature. These data illustrate the utility of an IOGAPS system to more accurately determine the particle-bound OC in comparison to FP-based systems.  相似文献   

15.
Modified polymer-coated glass samplers (POGs), termed EVA samplers, consist of micrometer-thin layers of ethylene vinyl acetate (EVA) coated onto a glass fiber filter or aluminum foil substrate. These samplers were designed to equilibrate rapidly with priority pollutants in air, making them ideal for short-term spatial studies in ambient or indoor air. The EVA sampler was calibrated by measuring the uptake of polychlorinated biphenyls (PCBs) over 8 weeks in an indoor environment, and four different film thicknesses were monitored that ranged from 0.1 to 30 μm. The results were used to calculate the average mass transfer coefficient (50.5 m/day) and generate contour maps that provide guidance in choosing an appropriate EVA sampler for a particular study based on film thickness, deployment time, and the log K(OA) of the anlayte. A range of air pollutant classes was also added to the EVA sampler prior to deployment to assess depuration rates. These included polychlorinated biphenyls (PCBs), current-use pesticides (CUPs), perfluorinated compounds (PFCs), and polybrominated diphenyl ethers (PBDEs). On the basis of the depuration profiles, the EVA sampler was a suitable equilibrium sampler for several CUPs and PCBs; however, for the high molecular weight PCBs and PBDEs, the EVA sampler operates as a linear uptake sampler. Samplers were also evaluated for their use as a rapid screening tool for assessing concentrations of siloxanes in indoor air. The EVA sampler was used to estimate air concentrations for D4 and D5 in laboratory air to be 118 and 89 ng/m(3), respectively. Analyses were performed directly using thermal desorption gas chromatography/mass spectrometry (TDS-GC-MS). EVA samplers show promise due to their relatively low cost and ease of deployment and applicability to a wide range of priority chemicals. The ability to alter the film thickness, and hence the sorption capacity and performance of the EVA sampler, allows for a versatile sampler that can be used under varying sampling conditions and deployment times.  相似文献   

16.
This is the second of two papers demonstrating the feasibility of using passive air samplers to investigate persistent organic pollutants along an urban-rural transect in Toronto. The first paper investigated spatial trends for polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). This second paper investigates the seasonality of air concentrations for polycyclic aromatic hydrocarbons (PAHs), PCBs, and OCPs along this transect. Air samplers, consisting of polyurethane foam (PUF) disks housed in stainless steel domed chambers, were deployed for three 4-month integration periods from June 2000 to July 2001. The seasonal variations of derived air concentrations for PAHs, PCBs, and OCPs reflected the different source characteristics for these compounds. PAHs showed a strong urban-rural gradient with maximum concentrations at urban sites during the summer period (July-October). These high summer values in Toronto were attributed to increases in evaporative emissions from petroleum products such as asphalt. PCBs also exhibited a strong urban-rural gradient with maximum air concentrations (approximately 2-3 times higher) during the spring period (April-June). This was attributed to increased surface-air exchange of PCBs that had accumulated in the surface layer over the winter. alpha-HCH was fairly uniformly distributed, spatially and temporally, as expected. This pattern and the derived air concentration of approximately 35 to approximately 100 pg m(-3) agreed well with high volume air data from this region, adding confidence to the operation of the passive samplers and showing that site-to-site differences in sampling rates was not an issue. For other OCPs, highest concentrations were observed during the spring period. This was associated with either (i) their local and/or regional application (gamma-HCH, endosulfan) and (ii) their revolatilization (chlordanes, DDT isomers, dieldrin, and toxaphene). Principal component analysis resulted in clusters for the different target chemicals according to their chemical class/source type. The results of this study demonstrate how such a simple sampling technique can provide both spatial and seasonal information. These data, integrated over seasons, can be used to evaluate contaminant trends and the potential role of large urban centers as sources of some semivolatile compounds to the regional environment, including the Great Lakes ecosystem.  相似文献   

17.
The use of thin-film polymer-coated glass surfaces or POGs as passive air samplers was investigated during an uptake experiment in an indoor environment with high levels of gas-phase polychlorinated biphenyls (PCBs). POGs consisted of a micron thick layer of ethylene vinyl acetate (EVA) coated onto glass cylinders. The uptake was initially linear with time and governed by the air-side mass transfer coefficient and surface area of the sampler. This was followed by a curvilinear region and finally a constant phase when equilibrium was established between air and EVA. The high surface area-to-volume ratio of the POGs allowed rapid equilibrium with gas-phase PCBs; equilibration times were on the order of hours for the low molecular weight congeners. The equilibrium concentration was dependent on the EVA-air partition coefficient, K(EVA-A), which was shown to be very well correlated to the octanol-air partition coefficient, K(OA). When POGs of varying thickness were equilibrated with air, the amount of PCB accumulated increased with increasing thickness of the EVA, indicating that uptake was by absorption into the entire polymer matrix. A wind field of 4 m s(-1) resulted in an increased uptake rate by a factor of approximately six compared to uptake in relatively still air. This wind speed effect was diminished, however, when POGs were housed in deployment chambers consisting of inverted stainless steel bowls. Relationships based on the air-side mass transfer coefficient and K(EVA-A) were developed for PCBs that describe the entire uptake profile and allow air concentrations to be determined from the amount of chemical accumulated in the POG. It is believed that these relationships are also valid when POGs are used to detect other classes of persistent organic pollutants.  相似文献   

18.
Chemical artifact is a problem in the sampling of atmospheric organic species for a relatively long sampling period. In this study, we evaluated a technique for the removal of atmospheric oxidants with added NO during gas and aerosol sampling by theoretical approach using a Regional Atmospheric Chemistry Mechanism (RACM) model. The elimination of O3 in the sample air is regulated predominantly by the reaction of NO and O3 in all simulated cases. We found that, without any oxidant scavenger, OH and NO3 concentrations in the sampler can be kept high even when wall loss processes of radicals are taken into account The relatively high concentration of OH is mainly due to the production of HO(x) in the sample air via the decomposition of HO2NO2 and O3-olefin reactions, whereas NO3 is produced by the decomposition of N2O5. Addition of NO with appropriate concentrations was found to effectively reduce both OH and NO3 concentrations in the sampling devices. This study demonstrates that scavenging of OH and NO3 as well as O3 is important for the study of chemical speciation of organic compounds and that NO addition is a useful technique to eliminate these oxidants.  相似文献   

19.
We present the design of an osmotic water sampler that is adapted to and validated in freshwater. The sample is drawn into and stored in a continuous narrow bore tube. This geometry and slow pump rate (which is temperature dependent: 0.8 mL/d at 4 °C to 2.0 mL/d at 28 °C) minimizes sample dispersion. We have implemented in situ time-stamping which enables accurate study of pump rates and sample time defining procedures in field deployments and comparison with laboratory measurements. Temperature variations are common in rivers, and without an accurate time-stamping, or other defining procedure, time of sampling is ambiguous. The sampler was deployed for one month in a river, and its performance was evaluated by comparison with manually collected samples. Samples were analyzed for major ions using Ion Chromatography and collision reaction Inductively Couple Mass Spectrometry. Despite the differences of the two sampling methods (osmotic sampler averages, while manual samples provide snapshots), the two data sets show good agreement (average R(2) ≈ 0.7), indicating the reliability of the sampler and at the same time highlighting the advantages of high frequency sampling in dynamic environments.  相似文献   

20.
Passive samplers for polar organic compounds often use a polyethersulfone (PES) membrane to retain the particulate sorbent material (e.g., in a POCIS; polar organic chemical integrative sampler) or to reduce the sampling rate and thus extend the kinetic regime (e.g., in a Chemcatcher). The transport kinetics over the PES membrane are evaluated here in a short-term (6 days) and a long-term (32 days) experiment with POCIS and Chemcatchers. Passive samplers were placed in a channel with flowing river water that was spiked with 22 organic chemicals including pharmaceuticals, pesticides and biocides; with logK(ow) (logarithmic octanol-water partitioning coefficient) values between -2.6 and 3.8. Samplers were removed at intervals and membranes and sorbent material were extracted and analyzed with LC-MS/MS. Uptake kinetics of the compounds fell between two extremes: (1) charged chemicals and chemicals of low hydrophobicity did not accumulate in PES and rapidly transferred to the sorbent (e.g., diclofenac) and (2) more hydrophobic chemicals accumulated strongly in the PES and appeared in the sorbent after a lag-phase (e.g., diazinon and diuron). Sorption kinetics were modeled with a three-compartment first-order kinetic model to determine uptake and elimination rate constants and partitioning coefficients. Water PES partitioning coefficients fitted with the model correlated well with experimentally determined values and logK(ow). Sampling rates of Chemcatcher (0.02-0.10 L/d) and POCIS (0.02-0.30 L/d) showed similar patterns and correlated well. Thus the samplers are interchangeable in practical applications. Longer lag-phases may pose problems when calculating time-weighted average aqueous concentrations for short passive sampling windows and for a correct integrative sampling of fluctuating concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号