首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Structural and Multidisciplinary Optimization - Topology optimization is a tool that supports the creativity of structural-designers and is used in various industries, from automotive to...  相似文献   

2.
Some aspects of truss topology optimization   总被引:3,自引:0,他引:3  
The present paper studies some aspects of formulations of truss topology optimization problems. The ground structure approach-based formulations of three types of truss topology optimization problems, namely the problems of minimum weight design for a given compliance, of minimum weight design with stress constraints and of minimum weight design with stress constraints and local buckling constraints are examined. The common difficulties with the formulations of the three problems are discussed. Since the continuity of the constraint or/and objective function is an important factor for the determination of the mathematical structure of optimization problems, the issue of the continuity of stress, displacement and compliance functions in terms of the cross-sectional areas at zero area is studied. It is shown that the bar stress function has discontinuity at zero crosssectional area, and the structural displacement and compliance are continuous functions of the cross-sectional area. Based on the discontinuity of the stress function we point out the features of the feasible domain and global optimum for optimization problems with stress and/or local buckling constraints, and conclude that they are mathematical programming with discontinuous constraint functions and that they are essentially discrete optimization problems. The difference between topology optimization with global constraints such as structural compliance and that with local constraints on stress or/and local buckling is notable and has important consequences for the solution approach.  相似文献   

3.
A novel parameterization concept for the optimization of truss structures by means of evolutionary algorithms is presented. The main idea is to represent truss structures as mathematical graphs and directly apply genetic operators, i.e., mutation and crossover, on them. For this purpose, new genetic graph operators are introduced, which are combined with graph algorithms, e.g., Cuthill–McKee reordering, to raise their efficiency. This parameterization concept allows for the concurrent optimization of topology, geometry, and sizing of the truss structures. Furthermore, it is absolutely independent from any kind of ground structure normally reducing the number of possible topologies and sometimes preventing innovative design solutions. A further advantage of this parameterization concept compared to traditional encoding of evolutionary algorithms is the possibility of handling individuals of variable size. Finally, the effectiveness of the concept is demonstrated by examining three numerical examples.  相似文献   

4.
5.
The purpose of this brief note is to demonstrate that general-purpose optimization methods and codes should not be discarded when dealing with stress-constrained truss topology optimization. By using a disaggregated formulation of the considered problem, such methods may find also “singular optima”, without using perturbation techniques like the ε-relaxed approach. Received February 19, 2002  相似文献   

6.
Topology optimization is one of the most effective tools for conducting lightweight design and has been implemented across multiple industries to enhance product development. The typical topology optimization problem statement is to minimize system compliance while constraining the design space to an assumed volume fraction. The traditional single-material compliance problem has been extended to include multiple materials, which allows increased design freedom for potentially better solutions. However, compliance minimization has the limitations for practical lightweight design because compliance lacks useful physical meanings and has never been a design criterion in industry. Additionally, the traditional compliance minimization problem statement requires volume fraction constraints to be selected a priori; however, designers do not know the optimized balance among materials. In this paper, a more practical method of multi-material topology optimization is presented to overcome the limitations. This method seeks the optimized balance among materials by minimizing the total weight while satisfying performance constraints. This paper also compares the weight minimization approach to compliance minimization. Several numerical examples prove the success of weight minimization and demonstrate its benefit over compliance minimization.  相似文献   

7.
Truss topology optimization using Genetic Algorithms (GAs) usually requires large computational cost, especially for large-scale problems. To decrease the structural analyses, a GA with a Two-level Approximation (GATA) was proposed in a previous work, and showed good computational efficiency with less structural analyses. However, this optimization method easily converges to sub-optimum points, resulting in a poor ability to search for a global optimum. Therefore, to address this problem, we propose an Improved GA with a Two-level Approximation (IGATA) which includes several modifications to the approximation function and simple GA developed previously. A Branched Multi-point Approximation (BMA) function, which is efficient and without singularity, is introduced to construct a first-level approximation problem. A modified Lemonge penalty function is adopted for the fitness calculation, while an Elite Selection Strategy (ESS) is proposed to improve the quality of the initial points. The results of numerical examples confirm the lower computational cost of the algorithm incorporating these modifications. Numerous numerical experiments show good reliability of the IGATA given appropriate values for the considered parameters.  相似文献   

8.
In replying to a valuable Discussion by Mariano Vázquez Espi, the authors show that the problem of friction forces in general can be handled by the Prager-Rozvany layout theory, and the optimal Michell layout does not always correspond to the maximum value of the static friction force. Moreover, it is explained that discontinuities in the specific cost function can be accommodated by an extended version of the Prager-Shield optimality criteria, which was already demonstrated in the second author’s first (1976) book.  相似文献   

9.
The paper addresses the classical problem of optimal truss design where cross-sectional areas and the positions of joints are simultaneously optimized. Se-veral approaches are discussed from a general point of view. In particular, we focus on the difference between simultaneous and alternating optimization of geometry and topology. We recall a rigorously mathematical approach based on the implicit programming technique which considers the classical single load minimum compliance problem subject to a volume constraint. This approach is refined leading to three new problem formulations which can be treated by methods of Mathematical Programming. In particular, these formulations cover the effect of melting end nodes, i.e., vanishing potential bars due to changes in the geometry. In one of these new problem formulations, the objective function is a polynomial of degree three and the constraints are bilinear or just sign constraints. Because heuristics is avoided, certain optimality properties can be proven for resulting structures. The paper closes with two numerical test examples.  相似文献   

10.
In this study, a new ground-structure-based representation for truss topology optimization is proposed. The proposed representation employs an algorithm that removes unwanted elements from trusses to obtain the final trusses. These unwanted elements include kinematically unstable elements and useless zero-force elements. Since the element-removal algorithm is used in the translation of representation codes into corresponding trusses, this results in more representation codes in the search space that are mapped into kinematically stable and efficient trusses. Since more representation codes in the search space represent stable and efficient trusses, the strategy increases meaningful competition among representation codes. This remapping strategy alleviates the problem of having large search spaces using ground structures, and encourages faster convergences. To test the effectiveness of the proposed representation, it is used with a simple multi-population particle swarm optimization algorithm to solve several truss topology optimization problems. It is found that the proposed representation can significantly improve the performance of the optimization process.  相似文献   

11.
12.
This paper addresses single and multiobjective topology optimization of truss-like structures using genetic algorithms (GA’s). In order to improve the performance of the GA’s (despite the presence of binary topology variables) a novel approach based on kinematic stability repair (KSR) is proposed. The methodology consists of two parts, namely the creation of a number of kinematically stable individuals in the initial population (IP) and a chromosome repair procedure. The proposed method is developed for both 2D and 3D structures and is shown to produce (in the single-objective case) results which are better than, or equal to, those found in the literature, while significantly increasing the rate of convergence of the algorithm. In the multiobjective case, the proposed modifications produce superior results compared to the unmodified GA. Finally the algorithm is successfully applied to a cantilevered 3D structure.  相似文献   

13.
The problem of optimally designing the topology of plane trusses has, in most cases, been dealt with as a size problem in which members are eliminated when their size tends to zero. This article presents a novel growth method for the optimal design in a sequential manner of size, geometry, and topology of plane trusses without the need of a ground structure. The method has been applied to single load case problems with stress and size constraints. It works sequentially by adding new joints and members optimally, requiring five basic steps: (1) domain specification, (2) topology and size optimization, (3) geometry optimization, (4) optimality verification, and (5) topology growth. To demonstrate the proposed growth method, three examples were carried out: Michell cantilever, Messerschmidt–Bölkow–Blohm beam, and Michell cantilever with fixed circular boundary. The results obtained with the proposed growth method agree perfectly with the analytical solutions. A Windows XP program, which demonstrates the method, can be downloaded from http://www.upct.es/~deyc/software/tto/.  相似文献   

14.
In many important design problems, some decisions should be made by finding the global optimum of a multiextremal objective function subject to a set of constrains. Frequently, especially in engineering applications, the functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. Such computationally challenging decision-making problems often cannot be solved by traditional optimization techniques based on strong suppositions about the problem (convexity, differentiability, etc.). Nature and evolutionary inspired metaheuristics are also not always successful in finding global solutions to these problems due to their multiextremal character. In this paper, some innovative and powerful deterministic approaches developed by the authors to construct numerical methods for solving the mentioned problems are surveyed. Their efficiency is shown on solving both the classes of random test problems and some practical engineering tasks.  相似文献   

15.
The aim of this note is to discuss problems associated with local buckling constraints in the context of topology optimization. It is shown that serious difficulties are encountered unless additional measures are introduced.  相似文献   

16.
This article presents a new procedure for the layout design of reinforcement in concrete structures. Concrete is represented by a gradient-enhanced continuum damage model with strain-softening and reinforcement is modeled as elastic bars that are embedded into the concrete domain. Adjoint sensitivity analysis is derived in complete consistency with respect to path-dependency and the nonlocal model. Classical truss topology optimization based on the ground structure approach is applied to determine the optimal topology and cross-sections of the reinforcement bars. This approach facilitates a fully digital work flow that can be highly effective, especially for the design of complex structures. Several test cases involving two- and three-dimensional concrete structures illustrate the capabilities of the proposed procedure.  相似文献   

17.
This study compares the performance of popular sampling methods for computer experiments using various performance measures to compare them. It is well known that the sample points, in the design space located by a sampling method, determine the quality of the meta-model generated based on expensive computer experiment (or simulation) results obtained at sample (or training) points. Thus, it is very important to locate the sample points using a sampling method suitable for the system of interest to be approximated. However, there is still no clear guideline for selecting an appropriate sampling method for computer experiments. As such, a sampling method, the optimal Latin hypercube design (OLHD), has been popularly used, and quasi-random sequences and the centroidal Voronoi tessellation (CVT) have begun to be noticed recently. Some literature on the CVT asserted that the performance of the CVT was better than that of the LHD, but this assertion seems unfair because those studies only employed space-filling performance measures in favor of the CVT. In this research, we performed the comparison study among the popular sampling methods for computer experiments (CVT, OLHD, and three quasi-random sequences) with employing both space-filling properties and a projective property as performance measures to fairly compare them. We also compared the root mean square error (RMSE) values of Kriging meta-models generated using the five sampling methods to evaluate their prediction performance. From the comparison results, we provided a guideline for selecting appropriate sampling methods for some systems of interest to be approximated.  相似文献   

18.
On the usefulness of non-gradient approaches in topology optimization   总被引:1,自引:1,他引:0  
Topology optimization is a highly developed tool for structural design and is by now being extensively used in mechanical, automotive and aerospace industries throughout the world. Gradient-based topology optimization algorithms may efficiently solve fine-resolution problems with thousands and up to millions of design variables using a few hundred (finite element) function evaluations (and even less than 50 in some commercial codes). Nevertheless, non-gradient topology optimization approaches that require orders of magnitude more function evaluations for extremely low resolution examples keep appearing in the literature. This forum article discusses the practical and scientific relevance of publishing papers that use immense computational resources for solving simple problems for which there already exist efficient solution techniques.  相似文献   

19.
In this contribution, we propose an effective formulation to address the stress-based minimum volume problem of truss structures. Starting from the lower-bound formulation in topology optimization, the problem is further expanded to geometry optimization and multiple loading scenarios, and systematically reformulated to alleviate numerical difficulties related to the melting node effect and stress singularities. The subsequent simultaneous analysis and design (SAND) formulation is well suited for a direct treatment by introducing a barrier function. Using exact second derivatives, this difficult class of problem is solved by sequential quadratic programming with trust regions. These building blocks result into an integrated design process. Two examples–including a large-scale application–illustrate the robustness of the proposed formulation.  相似文献   

20.
Level-set methods for structural topology optimization: a review   总被引:1,自引:0,他引:1  
This review paper provides an overview of different level-set methods for structural topology optimization. Level-set methods can be categorized with respect to the level-set-function parameterization, the geometry mapping, the physical/mechanical model, the information and the procedure to update the design and the applied regularization. Different approaches for each of these interlinked components are outlined and compared. Based on this categorization, the convergence behavior of the optimization process is discussed, as well as control over the slope and smoothness of the level-set function, hole nucleation and the relation of level-set methods to other topology optimization methods. The importance of numerical consistency for understanding and studying the behavior of proposed methods is highlighted. This review concludes with recommendations for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号