首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用斜轧穿孔法制备TA18钛合金管坯,分析了管坯表面质量、氧化层厚度、组织和性能特点,并研究了开坯轧制加工率对管材组织的影响,以及热处理制度对成品管组织与性能的影响。结果表明:斜轧穿孔法制备的管坯表面光滑,其组织为变形的魏氏组织和少量的块状α组织。该管坯在进行两辊开坯轧制时,变形量应控制在55%以内。采用斜轧穿孔管坯生产的48 mm×5 mm成品管材,经过650~670℃×1 h真空退火处理后,其力学性能完全满足国军标GJB 3423—98和美标ASTM B 338—2010的要求。  相似文献   

2.
对Al—Zn—Mg—Cu系超高强铝合金采用Zr细化组织处理后,研究了管材的组织和性能之间的关系,通过金相组织观察和断口扫描,分析了影响管材断裂韧性Kc值的主要因素。  相似文献   

3.
1特点60年代末兀年代初,莫斯科钢及合金学院开始研究用螺旋孔型对钛及难熔金属穿孔的方法。这种穿孔方法与传统方法的区别是加工时金属既发生切向变形,又发生径向压缩变形.根据这一特征,有人将其称为经向一切向轧制穿孔,国内通常称为斜轧穿孔。作为生产热变形管及冷变形管坯的方法斜轧穿孔工艺在黑色冶金工业中得到了广泛的使用.最近10多年来,该方法已经应用于钛及钛合金管材的工业生产中.斜轧穿孔的特点;轧制设备有一个特殊结构的三辊机座,三个轧辊各有一套独立的传动装置,轧制孔型为三辊孔型,轧辊与坯料变形平面及其轴线有一…  相似文献   

4.
为选择一种Ti-26钛合金斜轧穿孔管坯成品退火工艺,采用感应加热处理,氩气保护热处理和真空热处理3种退火工艺进行实验。对经3种热处理后的试样用金相显微镜观察微观组织,用X射线衍射和透射电镜进行物相分析。对3种试样进行了力学性能测试。用扫描电镜对拉伸断口的形貌进行观察分析。对比3种退火工艺试样的力学性能和显微组织得出,感应退火试样的组织均匀,晶粒细小,拉伸断口布满韧窝,显示延性断裂。XRD和TEM分析表明,合金为bcc结构的β单相组织。相应试样的抗拉强度达802.5 MPa,延伸率为15.25%,断面收缩率为41%,综合力学性能比其它2种工艺试样优越。因此,确定790℃,3min AC感应退火为Ti-26钛合金斜轧穿孔管坯成品退火工艺。  相似文献   

5.
TA16钛合金热加工管材工艺研究   总被引:1,自引:0,他引:1  
通过对TA16钛合金挤压锭坯制备工艺技术、挤压温度、变形程度、退火工艺制度、表面处理工艺方法、化学成分、工艺与组织性能相关性的研究,掌握了该钛合金的热加工变形特点,确定了热加工的工艺路线及参数.研制出的产品具有表面优、尺寸精、性能好等特点,满足相关技术标准的质量要求.  相似文献   

6.
研究了TA15钛合金挤压管材的退火制度对组织及性能的影响。结果表明,TA15钛合金挤压管材随退火温度从700℃升高到960℃,Rm分别从1050MPa降到985MPa,A从14%升到15%,表明强度下降幅度甚小、塑性变化不大。在700~850℃退火可消除管材内应力并有部分再结晶,温度升高到900℃时,TA15再结晶进行得充分完全,组织得到了细化、球化,管材的力学性能良好。  相似文献   

7.
采用16.3 MN卧式挤压机对TC4钛合金管材进行热挤压,研究了热挤压后管材不同部位的显微组织和力学性能。结果表明,TC4钛合金通过挤压变形可以获得均匀、细小的两相区加工组织。沿管材壁厚方向,外壁、中心和内壁的晶粒尺寸逐渐变大。但沿管材纵向,头部、中部、尾部的晶粒尺寸基本一致,这种组织均匀性保证了管材头、中、尾不同部位具有均匀一致的力学性能。  相似文献   

8.
热处理工艺对TB2钛合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了不同热处理工艺对TB2钛合金板材显微组织和力学性能的影响。结果表明,该合金在730℃以上固溶处理已经开始再结晶,在730~820℃之间处理的样品强度和延伸率变化不大;在760℃固溶处理3min,再结晶已经开始,保温时间〉120min时晶粒变得相当粗大;合适的固溶处理制度为760℃,10min;在固溶处理制度相同,时效时间为2h,时效温度变化对强度和塑性影响大不;时效时间延长至8h,随时效温度升高,Rm,RPo2呈下降趋势;760℃,10min固溶处理加500℃,8h时效处理后,Rm,值最高可达到1360MPa。  相似文献   

9.
研究了热处理对TA34钛合金管材显微组织、力学性能及成材率的影响。结果表明,TA34钛合金管材冷加工态组织为细小模糊晶,纵截面呈现金属流线;经道次间普通退火+成品等温分级退火(T1制度)处理后,组织形貌为等轴α相,晶粒平均尺寸约为12μm;经道次间普通退火+最后一道次轧制前等温分级退火+成品普通退火(T2制度)处理后,组织形貌为等轴α相伴随有少量变形的片状α相,晶粒尺寸为12~18μm。经不同热处理获得的管材在293、77、20 K的测试温度下强度相当,且强度均随着测试温度的降低而上升;T1制度下管材的塑性随着测试温度的降低下降不明显,其塑性明显优于T2制度管材;T2制度管材的成材率为44.9%,相比T1制度(成材率为39.5%)提高5.4%。  相似文献   

10.
采用锻造法、挤压法、斜轧法3种不同工艺制备TA15钛合金管材,并对比了性能、组织、外观尺寸及生产成本等方面的差异。结果表明:3种工艺均可以制备抗拉强度为900~1130 MPa,伸长率≥9%,断面收缩率≥25%,冲击功≥28 J的TA15钛合金管材,且锻造法制备的管材的表面质量及尺寸精度较挤压法和斜轧法更好;锻造法和挤压法制备的TA15钛合金管材的显微组织为α+β双态组织,而斜轧法制备的TA15钛合金管材的显微组织为粗大的魏氏体组织;锻造法和挤压法制备的TA15钛合金管材均具有良好的强度、塑性及冲击韧性等综合性能,但加工成本较高,适用制作性能要求高的零部件,而斜轧法制备的TA15钛合金管材的塑性较差,但加工成本最低,适用使用要求低的场合。研究为根据不同需求选择合适的工艺提供了理论指导。  相似文献   

11.
通过X射线衍射仪、光学显微镜、扫描电镜、硬度计以及万能拉伸试验机等研究了不同轧制温度及变形量对TB2钛合金显微组织、相结构以及力学性能的影响。结果表明,在600℃轧制处理后,TB2钛合金由β相和α相组成。同一轧制温度下,随着变形量的增加,晶粒被明显拉长,基体中的β晶粒部分破碎,并在晶界处出现大量再结晶晶粒。当轧制温度为600℃,变形量为60%时,合金的抗拉强度最大,可达到1360 MPa,伸长率为5.7%;而当轧制温度为600℃,变形量为40%时,合金的抗拉强度最大,可达到1270 MPa,伸长率为10.9%,综合力学性能较好。  相似文献   

12.
TB2钛合金筒形件旋压变形组织性能的研究   总被引:1,自引:0,他引:1  
赵云豪  汪发春  沈健 《锻压技术》2007,32(6):87-89,94
对TB2钛合金筒形件(管材)进行了变薄旋压成形试验,探讨了合金锻坯和挤压坯旋压变形后的组织性能、强化效应和塑性变形规律.结果表明,合金锻造变形率大于70%时可基本消除铸态组织;温度≥700℃、道次减薄率为20%~30%、进给比为0.5~1.0 mm·r-1时,合金筒形件旋压变形稳定.同时,对TB2钛合金旋压件进行了热处理试验,研究了固溶温度、时效温度对合金组织性能的影响,确定了合金的固溶温度和时效温度分别为710和520 ℃.  相似文献   

13.
利用光学显微镜、扫描电镜和拉伸试验机等研究了不同时效温度对固溶态TB15钛合金微观组织和力学性能的影响。结果表明:随着时效温度从520 ℃升高到540 ℃,TB15钛合金的拉伸强度和屈服强度先增加后减小,在530 ℃时效处理后可以获得最高的抗拉强度和屈服强度;时效处理后合金塑性偏低,其变化规律与强度相反。在断裂韧性方面,随着时效温度的上升,TB15钛合金的断裂韧性逐渐提高。固溶态TB15钛合金经不同温度时效处理后,析出大量的次生α片层相,等轴β组织转变为片层α和β转变组织。  相似文献   

14.
固溶温度对TB8钛合金组织及性能的影响   总被引:2,自引:0,他引:2  
研究了固溶温度对TB8钛合金显微组织及力学性能的影响.结果表明,随固溶温度的升高,合金β晶粒明显长大;合金固溶态强度略有降低,塑性逐渐升高;合金固溶+时效处理后,β晶界及晶粒内部均匀弥散析出大量次生α相颗粒,强度呈上升趋势,塑性明显降低.TB8钛合金在770 ~ 830℃温度范围内固溶后,具有较高的强度和优异的塑性,经520℃时效后,综合性能优异,抗拉强度> 1300 MPa,伸长率>15%,断面收缩率>55%.  相似文献   

15.
采用扫描电镜观察、拉伸和断裂韧性测试研究了不同固溶冷却方式下TB15钛合金经900 ℃×2 h固溶+530 ℃×8 h时效后的力学性能、断口形貌和显微组织。结果表明,固溶冷却方式对TB15钛合金强度和塑性的影响较大,对断裂韧性的影响较小。固溶后回充0.1 MPa氩气真空气冷时,合金的综合力学性能最好,抗拉强度为1391 MPa,伸长率为7.0%,断面收缩率为13.6%,断裂韧度为70.3 MPa·m1/2。随着固溶冷却速率的增加,TB15钛合金的断裂韧度逐渐减小,但变化幅度不大。不同固溶冷却方式下,TB15钛合金经固溶时效后的次生α相数量、厚度及片层间距有所不同。与空冷相比,回充0.1 MPa氩气真空气冷的片层状次生α相数量增多,厚度略有增加,片层间距有所增大。  相似文献   

16.
利用光学显微镜、拉伸试验机和扫描电镜等手段研究了多次重复固溶时效处理对TB15钛合金显微组织和力学性能的影响。结果表明,随着固溶时效处理重复次数的增加,TB15钛合金的显微组织发生了较为明显的变化,次生α相合并长大,原始β晶粒晶界增厚;1次固溶时效处理后合金的综合力学性能达到最优,随着固溶时效处理重复次数的增加,合金的强度和断裂韧度均降低,伸长率和断面收缩率也急剧降低,断裂类型从韧性断裂向脆性断裂转变;相同工艺参数的重复固溶时效处理不能实现在不大幅降低强度和断裂韧度的前提下改善该合金的室温塑性。  相似文献   

17.
通过对TA11钛合金不同组织状态的棒材进行组织、性能检测分析,研究了初生α相含量和尺寸对TA11钛合金室温拉伸性能、热稳定性能、蠕变性能的影响。研究结果表明,初生α相含量对TA11钛合金的拉伸性能影响较小,但对合金的抗蠕变性能影响明显:初生α相含量在50%~90%范围内时,合金的室温拉伸性能、热稳定性能随初生α相含量的增加变化不明显,抗蠕变性能随初生α相含量的增加而提高;初生α相尺寸对TA11钛合金的拉伸性能、蠕变性能具有一定的影响,随着组织粗大程度的增加,拉伸强度降低,抗蠕变性能提高。  相似文献   

18.
采用BLT-C1000型激光立体成形设备制备了沉积态的TB18钛合金,然后采用OM、SEM和拉伸试验机等方法研究了不同热处理工艺对TB18钛合金显微组织和力学性能的影响。结果表明,沉积态试验合金的宏观组织以长条形β晶粒为主,晶内由亚稳β相和针状次生α相组成,且存在贯穿β晶粒的沉积层线。随着直接时效温度的升高,原始β晶粒形状变化不大,内部次生α相厚度增加,在形貌上次生α相从针状向片状转变。直接时效温度高于550 ℃时,沉积层线消失,直接固溶温度高于830 ℃时显微组织以全β晶粒组成。固溶+时效处理后,微观组织以纵横交错的细层片状α相为主。随着直接时效温度的升高,抗拉强度和屈服强度降低,伸长率增加。固溶+时效后析出次生α相,抗拉强度和屈服强度显著增加,同时伸长率下降。综合考虑,实际生产中沉积态的TB18钛合金的最佳热处理工艺为直接时效500 ℃×4 h,此时强度和伸长率均高于指标要求。  相似文献   

19.
The influence of deformation parameters including deformation temperature, degree and speed on the microstructure and mechanical properties of TA15 titanium alloy was studied. The volume fraction, size and aspect ratio of primary a phase in deformed TAI 5 titanium alloy were quantitatively characterized. With increasing deformation temperature, the volume fraction and size of primary α phase decrease. The aspect ratio of primary a phase decreases with increasing deformation temperature. The tensile strength of TA15 alloy deformed at 0.1 mm/s is higher than that at 0.3 mm/s. After therlnoforming at 960℃, 0.1 mrn/s, the tensile strength is the highest up to 1 035 MPa and the elongation is 13.5%. When the thermoforming temperature is 1 050℃, the strength and elongation are both relative low, because the microstructure is Widmanstaten structure.  相似文献   

20.
通过改变固溶温度、固溶后的冷却方式和时效温度,研究了热处理制度对TA19钛合金微观组织和力学性能的影响。研究表明,随着固溶温度的升高,初生α相含量减少,使得伸长率和断面收缩率减小;而升高固溶温度使得β相中析出的细小次生α相增多,从而使室温抗拉强度增大。固溶处理后采用水冷时,由于从β相中析出大量细小弥散的次生α相,室温抗拉强度较大,但伸长率和断面收缩率较小。时效温度对微观组织和力学性能影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号