首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Corrosion of boilers and heat exchangers is accelerated in the presence of vanadium, sodium, and sulfur from low-grade fuels. Several iron- and nickel-based alloys were immersed in 60 mol% V2O5–40Na2SO4 salt for 1000 h in order to investigate their degradation behavior at 600 °C in air. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Their corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of scale oxides in the molten deposit, and their precipitation near the outer surface of the deposit. High Ni- and Cr-containing alloys show the lowest metal loss rates. Al addition was detrimental due to low-melting eutectic AlVO4–V2O5 formation. Fe–Cr-based alloys showed the highest metal loss rates. In such alloys, high Cr additions (above 20%) did not improve the performance due to the negative synergetic effect by simultaneous dissolution of Fe2O3 and Cr2O3. The predominant salt composition at the corrosion front varied from vanadate rich to sulfate rich during the exposure. This change in the attacking salt makes it difficult to find a protective material for mixed sulfate–vanadate-induced corrosion.  相似文献   

2.
Copper flash smelting produces flue dust containing SO2-rich exhaust gas, causing corrosion problems in the heat recovery boiler of the gas train. In order to understand the corrosion behaviour of boiler steels, conditions of the boiler were simulated in the laboratory. Corrosion damage occurred as chlorine reacted with steel surfaces forming chlorides which deplete the steels from their alloying metals. At the scale/dust deposit interface, where the highest sulphur partial pressures prevail, a sulphate layer covered the mixed oxide and chloride scale. Molten sulphate deposit reduced the metal loss of AISI 304 steel by preventing chromium chloride diffusion away from the steel surface. The Cr2O3 scales were quite stable under molten sulphates. The dust deposit melted partially due to the presence of ZnCl2 in the deposit which initiated corrosion damage by producing a molten salt layer on the steel surfaces bringing it in contact with aggressive compounds in the copper smelter flue dust.  相似文献   

3.
The electrochemical reduction of Zr4+(complex) ions in NaCl-KCl-K2ZrF6 molten salt on Pt electrode was investigated using cyclic voltammetry and square wave voltammetry at 1023 K.Two cathodic reduction peaks related to Zr4+/Zr2+ and Zr2+/Zr steps were observed in the cyclic voltammograms.The result was also confirmed by square wave voltammetry.The diffusion coefficient of Zr4+(complex) ions at 1023 K in NaCl-KCl-K2ZrF6 melt,measured by cyclic voltammetry,is about 4.22×10-6 cm2/s.The characterization of the deposits obtained by potentiostatic electrolysis at different potentials was investigated by XRD,and the results were well consistent with the electrochemical reduction mechanism of Zr4+(complex) ions.  相似文献   

4.
Reaction rates have been measured for the reduction of FeO from a lime-silica-alumina slag over carbon-saturated iron in graphite crucibles. The initial FeO concentrations were under 5 pet in a base slag composition of 46 to 47 pet CaO, 38 to 39 pet SiO2, 15 to 16 pet A12O8.The reaction rate was found to be proportional to about the second power of the analyzed iron content of the slag. Two rate constants were obtained for simultaneous reactions at the slag-metal and slag-graphite interfaces. Values for these constants at 1430°C (2606°F) were k1 = 0.00058 g FeO per (min) (sq cm) (pet FeO)2 at the metal and k2 = 0.00012 (same dimensions) at the graphite. The temperature coefficient was not measured independently for the two reactions, but the net effect of a 140°C rise in temperature was small.Iron droplets rose to the surface of the slag with gas bubbles and collected in a ring adjacent to the crucible wall in amount equal to or greater than the weight of iron calculated from FeO reduction, in those runs with both slag and metal. When only slag was present in the crucible, the iron beads were more evenly distributed over the entire crucible wall and were smaller in size and total amount.It is not possible to deduce a reaction mechanism to interpret the observations on the basis of these experiments alone, but several alternatives have been discussed in terms of intermediate reaction products, dissociation of FeO in the slag, diffusion, nucleation of gas or metal, and surface phenomena leading to reaction through iron films on rising bubbles of CO in the slag.The rate of reduction of FeO in the absence of sulphur is qualitatively consistent with the part that this reaction is believed to play in the desulphurization of iron by slags under similar experimental conditions.  相似文献   

5.
本文研究基于利用“原位热解—热法还原炼镁”海绵钛清洁生产新工艺,即还原蒸馏产生的气态氯化镁直接氧化热解制备高纯氧化镁及氯气,氧化镁经热法炼镁返回TiCl4还原环节、氯气返回沸腾氯化环节作为原料,实现海绵钛生产中新的镁、氯循环。,并针对“海绵钛生产中新的镁、氯循环”中的关键步骤—气态氯化镁与氧气的均相热解反应的反应器进行研究。采用数值模拟和物理模拟方法研究了反应器模型内的浓度场和速度场,在氮气与二氧化碳流量比为6:1时,二氧化碳采用环向四口进气方式,气体混合不均匀度为0.02,气体混合程度最佳。  相似文献   

6.
Coatings formed on aluminum, titanium, magnesium, zirconium, and niobium by means of plasma-electrolytic oxidation in an aqueous electrolyte containing MgZrF are studied. All elements involved in the composition of the complex compound are present in the coatings. Contents of the elements involved in the inner sphere are the largest. Phase and elementary compositions of the coatings depend on the nature of the valve metal. All coatings contain ZrO2 in either cubic or monoclinic modifications. The main phase of the coatings formed on magnesium is MgF2. According to the surface structure, the coatings can be divided into three groups: large-pore (on Mg, Al, and Ti), small-pore (on Nb), and compact with a wavy surface (on Zr).  相似文献   

7.
Al2O3 /xZrO2 (where x = 0, 3, 13, and 20 wt.%) composite coatings were deposited onto mild steel substrates by atmospheric plasma spraying of mixed α-Al2O3 and nano-sized monoclinic-ZrO2 powders. Microstructural investigation showed that the coatings comprised well-separated Al2O3 and ZrO2 lamellae, pores, and partially molten particles. The coating comprised mainly of metastable γ-Al2O3 and tetragonal-ZrO2 with trace of original α-Al2O3 and monoclinic-ZrO2 phases. The effect of ZrO2 addition on the properties of coatings were investigated in terms of microhardness, fracture toughness, and wear behavior. It was found that ZrO2 improved the fracture toughness, reduced friction coefficient, and wear rate of the coatings.  相似文献   

8.
Titanium is widely used as an implant material for artificial teeth. Furthermore, various studies have examined surface treatment with respect to the formation of a fine passive film on the surface of commercial titanium and its alloys and to improve the bioactivity with bone. However, there is insufficient data about the biocompatibility of implant materials in the body. The purpose of this study was to examine whether surface modification affects the precipitation of apatite on titanium metal. Specimens were chemically washed for 2 min in a 1∶1∶1.5 (vol.%) mixture of 48 %HF, 60%HNO3 and distilled water. The specimens were then chemically treated with a solution containing 97%H2SO4 and 30%H2O2 at the ratio of 1∶1 (vol.%) at 40°C for 1h, and subsequently heat-treated at 400°C for 1h. All the specimens were immersed in HBSS with pH 7.4 at 36.5°C for 15d, and the surface was examined with TF-XRD, SEM, EDX and XPS. In addition, specimens of commercial pure Ti, with and without surface treatment, were implanted in the abdominal connective tissue of mice for 28 d. Conventional aluminum and stainless steel 316L were also implanted for comparison. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a solution of H2SO4 and H2O2. The average roughness was 2.175 μm after chemical surface treatment. The amorphous titania was subsequently transformed into anatase by heat treatment at 400°C for 1h. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was 47.1μm in the chemically treated Ti, and 52.2, 168.7 and 101.9μm, respectively, in the untreated commercial pure Ti, aluminum and stainless steel 316L.  相似文献   

9.
A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.  相似文献   

10.
Electrodeposition of composite PbO2-based materials containing titanium dioxide particles was studied. The TiO2 content of the composite depends on the bath composition and the deposition conditions. Inclusion of TiO2 particles in PbO2 substantially changes the morphology and structure of the deposit. The oxygen overpotential at composite materials increased but the rate of the conversion of 4-chlorophenol into nontoxic compounds remained virtually unchanged. The lifetime of the electrodes containing the inert TiO2 phase was found to be twice as long as that of traditional PbO2 anodes.  相似文献   

11.
High volume fraction TiC-AlB2 reinforced Al composite material has been produced by a casting process based on the use of KBF4 salt. The reaction between the salt compound led to the release of AlB2 precipitates in commercial purity Al melt whereas the improved wettability between the TiC particles and the formed slag caused their spontaneous entry. The resulting double reinforced composite showed no sign of severe TiC dissolution-reaction.  相似文献   

12.
This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness (K IC) of the annealed coating was only 1.04 MPa m0.5.  相似文献   

13.
Phase formation sequence of the yttrium aluminates in the Y2O3-Al2O3-SiC ternary system as temperature increases were investigated via x-ray diffraction (XRD). Results showed that YAM (monoclinic), YAP (perovskite) and YAG (garnet) were the yttrium aluminates presented in the solid-state reacted samples at a fixed Al2O3:SiC ratio of 1:1. Formation of the yttrium aluminates depended on the temperature. The YAM, YAP and YAG started to form below 1150 °C, at 1300 °C, and at 1450 °C, respectively. Accordingly, two behavior phase diagrams of the Y2O3-Al2O3-SiC ternary system were recognized, one is in the temperature range of 1150-1300 °C and the other is in 1300-1450 °C, respectively. Thereafter, the phase equilibrium was reached in the temperature range of 1450-1700 °C. Effects of SiC on the phase formation processes in the ternary system were discussed.  相似文献   

14.
Reactive thermal spraying, in which thermodynamically stable compounds are formed by expected inprocess reactions, has attracted considerable attention as a result of the wide availability of in situ composite coatings. Such in-process reactions occur differently in high-velocity oxyfuel (HVOF) and plasma spraying because of differences in the flame temperature and speed. In the current study, a composite powder of SiO2/Ni/Al-Si-Mg was deposited onto an aluminum substrate to fabricate in situ composite coatings by both spraying methods. The coating hardness sprayed with Al-Si-Mg core powder increases with silicon and magnesium content, whereas the coatings by HVOF spraying show higher hardness than those by plasma spraying. In the present reactive spraying, the exothermic reaction of SiO2 with molten Al-Si-Mg alloy leads to composite materials of MgAl2O4, Mg2Si, and Al-Si matrix. Moreover, a rapid formation of aluminide (NiAl3), which is introduced by an exothermic reaction of plated nickel with Al-Si-Mg core powder, enhances the reduction of SiO2, especially in HVOF spraying. A series of in-process reactions proceed mainly during splat layering on a substrate instead of during droplet flight even in plasma spraying. Plasma-sprayed composite coatings become much harder because of the great progress of in-process reactions.  相似文献   

15.
Disk alloys used in advanced gas turbine engines often contain significant amounts of Mo (2 wt% or greater), which is known to cause corrosion under Type I hot corrosion conditions (at temperatures around 900 °C) due to alloy-induced acidic fluxing. The corrosion resistance of several model and commercial Ni-based disk alloys with different amounts of Mo with and without Na2SO4 deposit was examined at 700 °C in air and in SO2-containing atmospheres. When coated with Na2SO4 those alloys with 2 wt% or more Mo showed degradation products similar to those observed previously in Mo-containing alloys, which undergo alloy-induced acidic fluxing Type I hot corrosion even though the temperatures used in the present study were in the Type II hot corrosion range. Extensive degradation was observed even after exposure in air. The reason for the observed degradation is the formation of sodium molybdate. Transient molybdenum oxide reacts with the sodium sulfate deposit to form sodium molybdate which is molten at the temperature of study, i.e., 700 °C, and results in a highly acidic melt at the salt alloy interface. This provides a negative solubility gradient for the oxides of the alloying elements, which results in continuous fluxing of otherwise protective oxides.  相似文献   

16.
The present study investigates the early stages in the oxidation process of Sanicro 28 (Fe31Cr27Ni) stainless steel when exposed to an alkali salt (KCl, NaCl or K2CO3) for 2 h at 450 and 535 °C. After the exposure, the oxidized samples were analyzed with a combinatory method (CA, XPS and SEM–EDX). It was found that all three salts were corrosive, and the overall oxidation reaction rate was much higher at 535 °C than at 450 °C. There were clear differences in terms of the impact of cations (Na+, K+) and anions (Cl?, CO3 2?) on the initial corrosion process at both temperatures. When focusing on the cations, the presence of potassium ions resulted in a higher rate of chromate formation than in the presence of sodium ions. When studying the effect of anions, the oxidation of iron and chromium occurred at higher rates in the presence of both chloride salts than in the presence of the carbonate salt, and chloride salts seemed to possess higher diffusion rate in the gas phase and along the surface than carbonate salts. Moreover, at the higher temperature of 535 °C, the formed chromate reacted further to chromium oxide, and an ongoing oxidation process of iron and chromium was identified with a significantly higher reaction rate than at 450 °C.  相似文献   

17.
This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.  相似文献   

18.
This paper investigates the corrosion behavior of different regions of weldment of 2.25Cr-1Mo steel exposed in mixed oxidation and sulfidation (SO2 + O2) environment up to 500 h at 773 K. Microstructural investigation and characterization of oxide scales are done using SEM, TEM, and XRD. The obtained results infer that heat-affected zone corrodes faster than both base and weld metal. The reaction kinetics follows a parabolic growth rate for all regions. The higher corrosion rate of heat-affected zone is attributed to the formation of Cr23C6 secondary precipitates leading to depletion of protective inner scale of the Cr-rich oxide during welding.  相似文献   

19.
The role of minerals in biomass formation is understood only to a limited extent. When the term “photosynthesis—CO2 and H2O reduction of sugars, using solar energy”—is used, one normally thinks of chlorophyll as a compound containing magnesium. Alkali and alkaline earth metals present in leaf cells in the form of ions are equally essential in this solar energy bioconversion coupled with nitrogen fixation. Application of some of these principles can lead to artificial carbon-neutral processes on an industrial scale close to the concentrated CO2 emission sources.  相似文献   

20.
In this research, development of Cr3C2-25(NiCr) + 25%(WC-Co) composite coating was done and investigated. Cr3C2-25(NiCr) + 25%(WC-Co) composite powder [designated as HP2 powder] was prepared by mechanical mixing of [75Cr3C2-25(NiCr)] and [88WC-12Co] powders in the ratio of 75:25 by weight. The blended powders were used as feedstock to deposit composite coating on ASTM SA213-T22 substrate using High Velocity Oxy-Fuel (HVOF) spray process. High-temperature oxidation/corrosion behavior of the bare and coated boiler steels was investigated at 700 °C for 50 cycles in air, as well as, in Na2SO4-82%Fe2(SO4)3 molten salt environment in the laboratory. Erosion-corrosion behavior was investigated in the actual boiler environment at 700 ± 10 °C under cyclic conditions for 1500 h. The weight-change technique was used to establish the kinetics of oxidation/corrosion/erosion-corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), and EDS elemental mapping techniques were used to analyze the exposed samples. The uncoated boiler steel suffered from a catastrophic degradation in the form of intense spalling of the scale in all the environments. The oxidation/corrosion/erosion-corrosion resistance of the HVOF-sprayed HP2 coating was found to be better in comparison with standalone Cr3C2-25(NiCr) coating. A simultaneous formation of protective phases might have contributed the best properties to the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号