首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular design of wear‐preventing and friction‐reducing additives for ionic liquids is described. The tribological properties of carboxylic acid‐derived additives were evaluated by a ball‐on‐flat type tribotest under reciprocating motion. Tetraalkylammonium and tetraalkylphosphonium salts of N‐benzyl‐protected aspartic acid were dissolved in 1‐alkyl‐3‐methylimidazolium‐derived ionic liquids. They prevented wear remarkably and reduced friction fairly. Influences of alkyl group in imidazolium molecule on additive response were observed. In tetraalkylammonium‐derived ionic liquids, the additive reduced wear but did not reduce friction under these conditions. The salt of N‐acetyl‐protected glutamic acid prevented wear, but did not reduce friction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Fretting wear is often found at the contact surfaces of a tight assembly where small‐amplitude oscillatory movement occurs, which can be the concealed origin of some enormous accidents. Employment of solid lubrication coatings, as one of effective measurements to palliate the fretting damage, has been widely acknowledged. The present work studied the fretting behaviour of a molybdenum disulphide coating on SUS 316 stainless steel substrate by a relatively cheap and easy‐to‐use process: pressure spraying. Two contact configurations (cylinder‐on‐flat and ball‐on‐flat) were used in the tests with different displacement amplitudes (from 5 to 75 µm) and normal loads (from 100 to 400 N for ball‐on‐flat and from 400 to 1000 N for cylinder‐on‐flat). The results showed that large displacement amplitude is adverse to friction coefficient and coating lifetime and that under a critical contact pressure, coating endurance is improved contact pressure increases. Contact configuration influences friction coefficient by changing contact area and distribution of contact pressure. One master curve of average dissipated energy per cycle in initial stable stage was obtained for two contact configurations, which can be employed to approximately predict coating lifetime. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Yasuo Tanno  Akira Azushima 《Wear》2009,266(11-12):1178-1184
In order to investigate the effect of counter materials on the coefficients of friction of TiN coatings with preferred grain orientations, the coefficients of friction against six counter materials (ball) were measured. The ball materials were aluminum (A1050), stainless steel (SUS304, SUS440C), bearing steel (SUJ2), carburized steel (SWRM10), cemented tungsten carbide (WC-Co) and alumina (Al2O3). After tests, the worn flat surfaces of balls and the wear tracks of TiN coatings were analyzed by the electron probe micro analysis (EPMA) and the auger electron spectroscopy (AES) to observe the Ti oxide film on each ball material and the adhesion of ball materials to the TiN coatings. The Ti oxide film was observed on the worn flat surfaces of the ball materials and the ball materials did not adhere to the TiN coatings in case that the low coefficients of friction were obtained.  相似文献   

4.
The tribological properties of patterned surfaces were investigated under lubricated conditions. Micropatterns were fabricated on a Si surface using a combination of photolithography and plasma etching. NiFe film with a 150 nm thickness was then deposited on the patterned Si surface. We prepared four kinds of patterned surfaces: dimple, grating, bump, and mesh patterns. The dimensions of the patterns were: size 30–40 μm, pitch 120 μm, and depth 10–12 μm. Friction tests were carried out using a pin-on-plate tribometer. The pin specimen was made of cast iron and had a flat end. The normal load was varied from 9.8 to 98 mN, and the average sliding speed from 1.0 to 5.0 mm s−1. Slideway lubricating oils or a gear oil were used as the lubricant, and the ISO viscosity grades of these oils were VG32, VG68, and VG320. The results showed that the friction coefficients of the two reverse patterns showed very similar tendencies and that circular patterns had a lower friction coefficient than did the rectangular patterns at a high bearing characteristic number. The surface geometry of the Si surface did not affect the friction coefficients at a low bearing characteristic number.  相似文献   

5.
Jianqi Ma  Yufei Mo  Mingwu Bai 《Wear》2009,266(7-8):627-631
Monodisperse Ag nanoparticles with a particle size of about 6–7 nm and low volatile multialkylated cyclopentanes (MACs) lubricant were prepared. The effect of Ag nanoparticles as additive in MACs base oil on the friction and wear behavior of MACs was investigated. The friction and wear test of a steel disc sliding against the same steel counterpart ball was carried out on an Optimal SRV oscillating friction and wear tester. The morphology and elemental distribution of the worn surface of both the steel ball and steel disc and the chemical feature of typical element thereof were examined using a JEM-1200EX scanning electron microscope (SEM) equipped with a Kevex energy dispersive X-ray analyzer attachment (EDS) and X-ray photoelectron spectroscope (XPS), respectively. Friction and wear test indicates that the wear resistance and load-carrying capacity of MACs base oil were markedly raised and its friction coefficient changed little when 2% Ag nanoparticles were added in it. Results of SEM/EDS and XPS show that Ag nanoparticles were deposited on the friction pair surfaces to form low shearing stress metal Ag protective film in rubbing process.  相似文献   

6.
The effect of surface textures on the friction of a poly(dimethylsiloxane) (PDMS) elastomer has been investigated at both macro and microscales using a nanoindentation-scratching system. Friction tests were conducted by a stainless-steel bearing ball with a diameter of 1.6 mm (macroscale tests) and a Rockwell diamond tip with a radius of curvature of 25 μm (microscale tests) under normal loads of 5, 10, and 25 mN and with a sliding speed of 1 μm/s. Coefficient of friction (COF) on the pillar-textured surface was found to be much lower than that on the smooth surface of the same material, and it was reduced by about 59% at the macroscale tests and 38% at the microscale tests. The reduction of COF can be attributed to the reduced contact areas. The use of the JKR model revealed that the adhesion force has less effect on contacts under higher normal loads. COFs in different sliding directions on the groove-textured surfaces were compared, and a friction anisotropic behavior was identified and analyzed.  相似文献   

7.
Z.A. Wang  Z.R. Zhou   《Wear》2009,267(9-10):1399-1404
The chemical and physical properties are quite different for mineral oil and synthetic oil. Compared to the investigation of mineral oil, less work on fretting behaviour of synthetic oils was reported. In this paper, a study of typical synthetic base oils such as polyalkylene glycol (PAG), polyalphaolefin (PAO) and silicone oil has been conducted. The contact consisted of a fixed flat specimen (GCr15 steel and 45 steel) opposite to a moving ball specimen (GCr15 steel) with a diameter of 12.3 mm. Other main parameters were as follows: the slip amplitude was ranged from 5 to 80 μm, the frequency was varied from 2 to 5 Hz; the normal load, temperature and relative humidity were respectively 100 N, 23 °C and 60%. Variations in the tangential force versus the displacement as a function of the fretting cycles were recorded. For comparison, fretting tests under dry condition have also been performed. The fretting scars were examined after tests. The evolution of coefficient of friction and wear volume were analyzed and compared at different fretting regimes for different synthetic base oils. The competitions between oil penetration into the interface and self-cleaning by fretting in different fretting regimes, the effect of physical properties such as surface tension, pressure–viscosity coefficient and compressibility on fretting behaviour have been particularly discussed.  相似文献   

8.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

9.
Dense 8 mol% CuO doped 3Y-TZP ceramics prepared by pressureless sintering at 1500 °C exhibits a good wear-resistance (specific wear rate k < 10−6 mm3 N−1 m−1) and promisingly low friction (coefficient of friction f = 0.2–0.3) when sliding against an alumina ball under unlubricated conditions. It was recognized that a self-lubricating mechanism is the most important contribution to the reduction of friction. During operation of the tribosystem, a soft interfacial patchy layer is generated in the contact area. As confirmed by calculations, based on a deterministic friction model, this soft interfacial patchy layer reduces friction. It was demonstrated that the presence of copper oxide is important for the formation of such an interfacial layer. The mechanism of the transition from mild to severe wear was also investigated. Detachment of a top layer in the wear track was proven to be the main reason for this tribological change.  相似文献   

10.
Monodisperse ZrO2 nanoparticles with a particle size of about 6–7 nm and low volatile multialkylated cyclopentanes (MACs) lubricant were prepared and characterized. The effect of ZrO2 nanoparticles as additive on the friction and wear behavior of MACs base oil was investigated. The friction and wear performance of 2 wt% ZrO2 nanoparticles + MACs was evaluated using an Optimal SRV oscillating friction and wear tester, with a steel ball sliding against the same steel counterpart disc. Results indicate that the wear resistance and load-carrying capacity of MACs base oil were markedly raised and its friction coefficient changed little when 2 wt% ZrO2 nanoparticles were added to it.  相似文献   

11.
In this study we investigated the sliding velocity dependency of the coefficient of friction for a Si-containing diamond-like carbon (DLC-Si) film in an automatic transmission fluid (ATF) under a wide range of contact pressures. The DLC-Si film and a nitrided steel with a surface roughness, RzJIS, of around 3.0 μm were used as disk specimens. A high-carbon chromium steel (JIS-SUJ2) bearing ball was used as a ball specimen. Friction tests were conducted using a ball-on-disk friction apparatus under a wide range of sliding velocites (0.1-2.0 m/s) and contact pressures (Pmax: 0.42-3.61 GPa) in ATF. The friction coefficients for the nitrided steel had a tendency to decrease with an increase in sliding veloicity under all the contact pressure conditions; however, the friction coefficients for the DLC-Si film were stable with respect to sliding velocities under all the contatct pressures. These results indicate that the DLC-Si film suppresses the stick-slip motion during sliding againt steel in ATF, which is a desired frictional characteristic for the electromagnetic clutch disks used under lubrication. Furthermore, the DLC-Si film showed a higher wear resistance and lower aggression on the steel ball specimen than the nitrided steel. There were less hydrodynamic effects on the friction coefficient for the DLC-Si film possibly due to maintenance of the initial surface roughness and its poorer wettability with the fluid. X-ray photoelectron spectroscopy (XPS) analysis of the sliding surfaces revealed that the adsorption film derived from the succinimide on the sliding surfaces of the DLC-Si film and the mating steel ball also contributed to the sufficient and less sliding-velocity-dependant friction coefficients.  相似文献   

12.
Surface treatment is an important aspect of all manufacturing processes to impart specific physical, mechanical and tribological properties. Burnishing process is a post-machining operation in which the surface irregularities of the workpiece are compressed by the application of a ball or roller. In the present study, simple and inexpensive burnishing tools, with interchangeable adapter for ball and roller were designed and fabricated. Ball burnishing processes were carried out on aluminium 6061 under different parameters and different burnishing orientations to investigate the role of burnishing speed, burnishing force and burnishing tool dimension on the surface qualities and tribological properties. The results showed that burnishing speed of 330 rpm and burnishing force of 160 N produce optimum results. Meanwhile, a decrease in the burnishing ball diameter leads to a considerable improvement in the surface roughness up to 75%. On the other hand, parallel burnishing orientation exhibits lower friction coefficient compared to cross-burnishing orientation. Furthermore, ball burnishing process is capable of improving friction coefficient by 48% reduction and weight loss by 60-80% reduction of burnished surface of aluminium 6061. These findings are further supplemented by the surface features as seen in SEM photomicrographs.  相似文献   

13.
为改善锂基润滑脂摩擦学性能,制备不同添加量纳米CuO改性的锂基润滑脂。采用3H-2000PS2比表面及微孔分析仪对纳米CuO粒子进行表征,采用四球摩擦磨损试验机分析纳米CuO添加量对锂基润滑脂摩擦学性能的影响,采用扫描电镜(SEM)和三维形貌分析仪分析试验后钢球磨痕形貌。结果表明:纳米CuO质量分数为0.60%时锂基润滑脂具有最佳的抗磨减摩效果,摩擦因数和磨斑直径较基础脂分别降低24%和12%;一定添加量下,纳米CuO对磨损表面具有修复作用,含质量分数0.60%纳米氧化铜的润滑脂润滑时,磨损表面具有较低的表面粗糙度和较少的犁沟,表现出最佳的抗磨性能。  相似文献   

14.
Atomically flat and clean metal surfaces exhibit a regime of ultra-low friction at low normal loads. Atomic force microscopy, performed in ultra-high vacuum on Cu(100) and Au(111) surfaces, reveals a clear stick-slip modulation in the lateral force but almost zero dissipation. Significant friction is observed only for higher loads (∼4–6 nN above the pull-off force) together with the onset of wear. We discuss the minor role of thermal activation in the low friction regime and suggest that a compliant metallic neck between tip and surface is formed which brings upon the low, load-independent shear stress.  相似文献   

15.
Multiwalled carbon nanotubes (MWCNTs) were functionalized and were used as additives in paraffin oil to improve its lubrication effect for bismaleimide resin. The tribological behavior of bismaleimide resin lubricated by the paraffin oil filled with the functionalized carbon nanotubes was investigated by friction and wear tester. The wear surface of the resin with steel ball as tribopair was analyzed by means of scanning electron microscopy (SEM). It was found that the addition of this kind of functionalized MWCNTs effectively reduced the friction coefficient. An optimal additive concentration existed in the system and was found to be 0.025 wt%. A lubrication model for the resin and steel ball system was postulated and it was the isolating effect and bearing structure of f-MWCNTs that played a key role in friction and wear reduction.  相似文献   

16.
Four kinds of paper-based friction materials reinforced with carbon fibers of 100, 400, 600 and 800 μm were prepared by paper-making processes. Experimental results showed that the friction materials became porous with fiber length increasing. The friction torque curves were flat except the sample with 100 μm fibers. The wear rate of the sample with 100 μm fibers was only 1.40×10−5 mm3/J. Tiny debris and fine scratches formed in the worn surface were the reason for excellent wear resistance of friction pairs with 100 μm fibers. The friction pairs with 400, 600 and 800 μm fibers showed typically abrasive wear and fatigue wear.  相似文献   

17.
Abstract

The ball on disc test configuration is preferred to the flat ended pin on disc because the ball is self-aligned and measurement of wear on the ball is of higher accuracy, compared to the pin. Silicon nitride, sliding on itself in water, was tested with the ball on disc tribometer. Misalignment of the test ball from its proper position behind the disc axis of rotation leads to friction measurement errors, which were analysed. The disc wears non-uniformly, the wear track depth and width vary in longitudinal direction by a factor of 2–3. The uneven wear of the disc is explained by the combined effects of sliding surface anisotropy and disc material non-homogeneity on the one hand and by the friction force and the normal load periodic variation on the other hand. During the running-in process at particular sliding velocity amplitude modulated friction force was observed and an explanation by the mechanical vibration 'beating' phenomenon was suggested. Predictive model of the running-in process is presented, which describes the evolution of the ball wear scar area, the contact pressure and the wear rate. The model predictions are consistent with the experimental data.  相似文献   

18.
K.Y. Li  Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1577-1588
Diamond-like carbon (DLC) coatings were prepared on AISI 440C steel substrates at room temperature by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma. Using the designed Ti/TiN/TiCN/TiC interfacial transition layers, relatively thick DLC coatings (1-2 μm) were successfully prepared on the steel substrates. The friction and wear performance of the DLC coatings was evaluated by ball-on-disk tribometry using a steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). By optimizing the deposition parameters such as negative bias voltage, DLC coatings with hardness up to 30 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball could be obtained. The friction coefficient was maintained for 100,000 cycles (∼2.2 km) of dry sliding in ambient environments. In addition, the specific wear rates of the coatings were found to be extremely low (∼10−8 mm3/Nm); at the same time, the ball wear rates were one order of magnitude lower. The influences of the processing parameters and the sliding conditions were determined, and the frictional behavior of the coatings was discussed. It has been found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Therefore, it is feasible to prepare hard and highly adherent DLC coatings with low friction coefficient and low wear rate on engineering steel substrates by the ECR-CVD process. The excellent tribological performance of DLC coatings enables their industrial applications as wear-resistant solid lubricants on sliding parts.  相似文献   

19.
In this paper, the effect of surface topography on the frictional behavior is investigated at micro/nano-scale in order to better understand the influence of asperity contact angle on friction. Experiments were performed to observe the variation in the frictional force as a spherical ball slides across a grooved surface. Specimens with single and multiple grooves of tens of micrometers in width were fabricated on silicon wafers. The frictional behavior between these specimens and steel balls of different diameters were observed with a tribometer built inside a scanning electron microscope (SEM). Normal load in the range of 20 mN and sliding speed of about 1-6 μm/s were applied in the experiments. It was shown that for relative ball/groove dimension that resulted in low contact angle, the overall frictional force was less than that observed for surface without the groove. Also, in situations where there was a great change in the contact angle stick-slip behavior could be observed. This stick-slip behavior is attributed to mechanical interlocking action.In addition to the above experiments, tests were conducted using lateral force microscopy (LFM). Unlike the previous finding that LFM output is dependent on the slope alone, it was found that the signal was more sensitive to the change in slope, especially when the slope was relatively large. Overall, both micro and nano-scale topographic effect on friction was similar. These results will ultimately aid in design of surface topography for micro-systems for best tribological performance.  相似文献   

20.
In the present study, three kinds of self-assembled dual-layer films with various tail groups and chain length were prepared by adsorption of different carboxylic acids (stearic acid, STA; propionic acid, PPA; and phenylacetic acid, PAA) to the top of 3-aminopropyltriethoxysilane (APS) film on silicon surface. Using an atomic force microscopy, the films were found to reveal smaller adhesion and friction forces in vacuum than in atmosphere. Due to the effect of the adsorbed water layer on the samples, the more hydrophilic film exhibited the larger difference between the friction forces in vacuum and in atmosphere. For the dual-layer films either in atmosphere or in vacuum, the densely packed long chains can lead to lower friction than the poor-packed short chains, and the tail phenyl groups may induce higher friction than the methyl groups. In the initial stage of nanowear process by a diamond tip, a series of hillocks were observed on silicon surface along the scratching line. It was found that all the films can effectively enhance the antiwear ability of silicon surface and the self-assembled dual-layer film terminated by long chains (STA/APS) or –C6H5 groups (PAA/APS) performed much better than that terminated by short chains. Finally, the microwear abilities of the films were examined on a universal micro-tribometer. With the increase in normal load from 50 to 200 mN, the wear life varied for different films and good antiwear performances were also assigned to STA/APS and PAA/APS. This work can be indicative in the application of self-assembled films in the micro/nanoelectromechanical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号