首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N.W. Khun 《Electrochimica acta》2009,54(10):2890-1544
Nitrogen doped tetrahedral amorphous carbon (ta-C:N) thin films were deposited on p-Si (1 1 1) substrates (1 × 10−3 to 6 × 10−3 Ω cm) by a filtered cathodic vacuum arc technique with different nitrogen flow rates (3 and 20 sccm). The ta-C:N film coated samples were used as working electrodes to detect trace heavy metals such as zinc (Zn), lead (Pb), copper (Cu) and mercury (Hg) by using linear sweep anodic stripping voltammetry in 0.1 M KCl solutions (pH 1). The influence of nitrogen flow rate on the sensitivity of the films to the metal ions was investigated. The results showed that the current response of the ta-C:N film electrodes was significant to differentiate all the tested trace metal ions (Zn2+, Pb2+, Cu2+, and Hg2+) and the three ions (Pb2+ + Cu2+ + Hg2+) could be simultaneously identified with good stripping peak potential separations.  相似文献   

2.
Nitrogen-containing activated carbon (NAC) derived from ammonium humates was produced and its porous structure (specific surface, pore volume) investigated. The NAC is mesoporous activated carbon with surface area of 557 m2/g and containing 2.4 wt.% of nitrogen. Sorption characteristics (sorption activity of iodine, methylene blue, benzene and metal ions Cu2+ and Pb2+) of NAC are compared with activated charcoal and BAU-A.  相似文献   

3.
A novel fluorescent sensor based on thiooxorhodamine B has been prepared to detect Hg2+ in aqueous buffer solution. It demonstrates high selectivity for sensing Hg2+ with about 383-fold enhancement in fluorescence emission intensity and micromolar sensitivity (Kd = 7.5 × 10−6 mol L−1) in comparison with alkali and alkaline earth metal ions (K+, Na+, Mg2+, Ca2+) and other transition metal ions (Mn2+, Ni2+, Co2+, Cu2+, Zn2+, Cd2+, Ag+, Pb2+, Cr3+, Fe3+). Meanwhile the distinct color changes and rapid switch-on fluorescence also provide ‘naked eyes’ detection for Hg2+ over a broad pH range. Moreover, such sensor is cell-permeable and can visualize the changes of intracellular mercury ions in living cells using fluorescence microscopy.  相似文献   

4.
In order to understand the adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons, the carbon yield, specific surface area, micropore area, zeta potential, and the effects of pH value, soaking time and dosage of bamboo activated carbon were investigated in this study. In comparison with once-activated bamboo carbons, lower carbon yields, larger specific surface area and micropore volume were found for the twice-activated bamboo carbons. The optimum pH values for adsorption capacity and removal efficiency of heavy metal ions were 5.81–7.86 and 7.10–9.82 by Moso and Ma bamboo activated carbons, respectively. The optimum soaking time was 2–4 h for Pb2+, 4–8 h for Cu2+ and Cd2+, and 4 h for Cr3+ by Moso bamboo activated carbons, and 1 h for the tested heavy metal ions by Ma bamboo activated carbons. The adsorption capacity and removal efficiency of heavy metal ions of the various bamboo activated carbons decreased in the order: twice-activated Ma bamboo carbons > once-activated Ma bamboo carbons > twice-activated Moso bamboo carbons > once-activated Moso bamboo carbons. The Ma bamboo activated carbons had a lower zeta potential and effectively attracted positively charged metal ions. The removal efficiency of heavy metal ions by the various bamboo activated carbons decreased in the order: Pb2+ > Cu2+ > Cr3+ > Cd2+.  相似文献   

5.
Awadallah-F  Ahmed  Naguib  H. F. 《Polymer Bulletin》2017,74(11):4659-4679

The indigenous materials such as tea waste were exploited as antimicrobial adsorbent for removing heavy metal ions. It was well known that tea waste was characterized with biodegradability and environmental-friendly product. Grafting copolymerization of acrylic acid onto tea waste was carried out using gamma radiation. The effects of solvent, dose and feeding concentration of acrylic acid have been investigated to achieve the optimum conditions. Grating (%) ranged from 30 to 70 for DMSO and H2O, respectively. The grafted tea waste was characterized by Fourier transform infrared (FTIR) spectroscopy, swelling study, scanning electron microscopy (SEM) and energy dispersive spectrometry X-rays (EDS). The grafted samples were used in waste water treatment to remove heavy metal ions (Cr3+, Pb2+ and Hg2+). The highest adsorption capacity was 35 and 200 mg/g of Hg+2 ions for ungrafted and grafted samples, respectively. The results showed that the selectivity among these metal ions is different onto tea waste-graft-polyacrylic acid. The grafted tea waste samples, which complexed with Cr3+, Pb2+ and Hg2+ ions, were found to have antimicrobial features. Therefore, they could be used as adsorbent in removing heavy metal ions with antimicrobial features as well.

  相似文献   

6.
The aim of this study was to prepare magnetic beads that could be used for the removal of heavy‐metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [m‐poly(EGDMA–VTAZ)] beads were produced by suspension polymerization in the presence of a magnetite Fe3O4 nanopowder. The specific surface area of the m‐poly(EGDMA–VTAZ) beads was 74.8 m2/g with a diameter range of 150–200 μm, and the swelling ratio was 84%. The average Fe3O4 content of the resulting m‐poly(EGDMA–VTAZ) beads was 14.8%. The maximum binding capacities of the m‐poly(EGDMA–VTAZ) beads from aquous solution were 284.3 mg/g for Hg2+, 193.8 mg/g for Pb2+, 151.5 mg/g for Cu2+, 128.1 mg/g for Cd2+, and 99.4 mg/g for Zn2+. The affinity order on a mass basis was Hg2+ > Pb2+ > Cu2+ > Cd2+> Zn2+. The binding capacities from synthetic waste water were 178.1 mg/g for Hg2+, 132.4 mg/g for Pb2+, 83.5 mg/g for Cu2+, 54.1 mg/g for Cd2+, and 32.4 mg/g for Zn2+. The magnetic beads could be regenerated (up to ca. 97%) by a treatment with 0.1M HNO3. These features make m‐poly(EGDMA–VTAZ) beads potential supports for heavy‐metal removal under a magnetic field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Tingmei Tang  Jiang Xu  Rongjie Lu  Jingjing Wo  Xinhua Xu 《Fuel》2010,89(12):3613-3617
Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg2+ to Hg0. The present study employed three agents: Na2S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg2+ in simulated desulfurization solutions. The effects of the precipitator’s dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl? and other metal ions (e.g. Cu2+ and Pb2+) on Hg2+ removal were studied. A linear relationship was observed between Hg2+ removal efficiency and the increasing precipitator’s doses along with initial pH. The addition of chloride and metal ions impaired the Hg2+ removal from solutions due to the complexation of Cl? and Hg2+ as well as the chelating competition between Hg2+ and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg2+ reduction as well as Hg0 re-emission from FGD liquors. More than 90% Hg2+ was captured by precipitating agents while Hg2+ reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg0 pollution from FGD liquors.  相似文献   

8.
Peanut skin, when treated with formaldehyde to polymerize tannins, is a highly efficient substrate for removal of many heavy metal ions from aqueous waste solutions. The ions Ag1+, Cd2+, Cr6+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, as well as Ca2+ and Mg2+, were contacted with formaldehyde-treated peanut skin. Quantitative removal could be achieved with Ag1+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+. Capacity of the substrate for ions was promising for Pb2+ (2.1 meq/g substrate), Cu2+ (3.0 meq/g), and Cd2+ (1.3 meq/g). Sorption from a solution containing Cd2+, Cu2+, Hg2+, Ni2+, Pb2+, Zn2+, on a packed column of formaldehyde-treated peanut skin indicated that Hg2+, Pb2+, and Cu2+ were rapidly and completely bound to the packing, while Cd2+, Ni2+, and Zn2+ were poorly bound until the preferred ions had been removed from solution.  相似文献   

9.
Poly(acrylamide) (PACM) used in this study was prepared through an effective atom transfer radical polymerization process and characterized by NMR, FTIR, and thermo gravimetric analysis. Resulting polymer was used for the uptake of heavy metal ions from aqueous solution. Partition coefficient, retention capacity, and metal ion uptake behavior in aqueous solution of PACM at different monomer percent conversions and effect of parameters for optimization of polymerization reaction gives thermally stable PACM. Efficiency of metal ion uptake of different molecular weights of PACM were tested in batches for Ni2+, Pb2+, Cu2+, Zn2+, and Hg2+ ions in single metal solution. Metal ion sorption capacities increase with increase in polymer concentration. Metal ion sorption capacities in single metal system were 6.3 mg g?1 Ni2+, 6.0 mg g?1 Pb2+, 6.9 mg g?1 Cu2+, 6.2 mg g?1 Zn2+, 22.4 mg g?1 Hg2+ for PACM of 88% conversion (Mn = 19,850). Uptake by the PACM indicates that they are effective in removing metal ions from single metal ion solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Further studies on adsorption of different metal ions by the four dyed and undyed cellulosic substrates namely cotton fibers, bleached bamboo pulp, jute fibers, and sawdust were carried out. Different metal ions adsorbed were Fe2+, Fe3+, Pb2+, and Hg2+. The equilibrium metal adsorption was studied by EDTA method. The control and dyed substrates adsorbed these metal ions to a significant extent, thus providing an effective and cheap method for adsorption of costly but polluting and toxic metals like Pb2+ and Hg2+. The adsorption levels varied up to 95% for various substrate–dye–metal ion combinations.  相似文献   

11.
ABSTRACT

The ion exchange behavior of a sulfur-modified biotite towards Pb2+, Hg2+, Co2+, Cu2+, Cd2+ and Zn2+ ions has been studied. The ion exchange isotherms of divalent cations were determined and concentration equilibrium constants as a function of metal loading were analyzed. Sulfur modified biotite exhibits high affinity for Hg2+, Pb2+, Cu2+ and Cd2+ ions in individual solutions and in the presence of electrolytes. About 200 mg Hg/g uptake in 1·10?3 M Hg2+ solution and ~ 35 mg Hg/g in groundwater simulant or an alkaline simulant 2 M in NaN03 + 1 M in NaOH was found. The possibility of a complex ion exchange and precipitation mechanism of the sulfur modified biotite towards the soft cations is proposed.  相似文献   

12.
We have prepared a novel kind of magnetic nanoparticle with high adsorption capacity and good selectivity for Pb2+ ions by modifying the magnetic nanoparticles with polyvinyl alcohol (PVA) and thiourea. The resultant magnetic nanoparticles were used to adsorb Pb2+ ions from aqueous solution. The influence of the solution pH, the adsorption time, the adsorption temperature, coexisting ions, and the initial concentration of Pb2+ ions on the adsorption of Pb2+ ions were investigated. The results indicated that Pb2+ ions adsorption was an endothermic reaction, and adsorption equilibrium was achieved within 30 min. The optimal pH for the adsorption of Pb2+ ions was pH 5.5, and the maximum adsorption capacity of Pb2+ ions was found to be 220 mg/g. Moreover, the coexisting cations such as Ca2+, Co2+, and Ni2+ had little effect on adsorption of Pb2+ ions. The regeneration studies showed that thiourea functionalized PVA‐coated magnetic nanoparticles could be reused for the adsorption of Pb2+ ions from aqueous solutions over five cycles without remarkable change in the adsorption capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40777.  相似文献   

13.
《分离科学与技术》2012,47(8):1635-1643
Abstract

This investigation examines metal ion adsorption on mesoporous silicate, MCM‐41, synthesized from sodium silicate solution and cethyltrimethylammonium bromide (CTAB). MCM‐41 has potential as an adsorbent material, with a regular hexagonal pore structure, large specific surface area, and large pore volume. The MCM‐41 synthesized for this investigation is characterized using powder X‐ray diffraction and nitrogen adsorption and desorption isotherms data. The adsorption behavior for cadmium(II) and lead(II) onto MCM‐41 was studied by contacting the mesoporous silicate with an aqueous solution of metal salts and acetylacetone. Both Cd2+ and Pb2+ were found to quantitatively adsorb onto MCM‐41. The results of this study suggest that MCM‐41 may have applications in the recovery of toxic metals from waste waters.  相似文献   

14.
A new hydrogel that contains sulfur is prepared by radiation polymerization and its application for recovery of Hg2+, Pb2+, Cd2+, and Cu2+ ions is discussed. The metal hydrogel complexes are isolated and characterized by using different spectroscopic techniques (UV‐visible, IR, NMR, and mass), thermal analysis (TGA and DSC) measurements, and SEM. Also, the mode of complexation is determined using IR and NMR spectroscopy. The scanning electron micrographs show that the hydrogel has a great ability to recover the metal ions in the following order: Hg2+ > Cd2+ > Pb2+ > Cu2+. TGA thermograms are used to investigate the mechanism of thermal decomposition. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 955–966, 2000  相似文献   

15.
Water‐insoluble polyaspartyl polymers were synthesized by using water as medium instead of organic medium. Taking Ca2+ as a reference, the binding of several heavy‐metal ions, including Pb2+, Cd2+, Hg2+, Cr3+, Cu2+, and Mn2+, by polyaspartyl polymers was studied. The experimental results revealed that polyaspartate is an excellent binding agent for the investigated heavy‐metal ions. These cation ions were bound to polyaspartate polymer by the same mechanism as Pb2+, which can be explained by ion exchange model. Since polyaspartate has a protein‐resembling structure that is sensitive to trace heavy metal, it was used to remove some trace heavy‐metal elements in Chinese herbal medicines. It was found that polyaspartate material was an effective agent for the removal of Pb2+, Cd2+, and Hg2+ ions from glycyrrhizin, angelica, and gynostemma pentaphyllum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
N‐methacryloyl‐(L )‐alanine (MALA) was synthesized by using methacryloyl chloride and alanine as a metal‐complexing ligand or comonomer. Spherical beads with an average diameter of 150–200 μm were obtained by suspension polymerization of MALA and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(HEMA–MALA) beads were characterized by SEM, swelling studies, surface area measurement, and elemental analysis. Poly(HEMA–MALA) beads have a specific surface area of 68.5 m2/g. Poly(HEMA–MALA) beads with a swelling ratio of 63%, and containing 247 μmol MALA/g were used in the removal of Hg2+ from aqueous solutions. Adsorption equilibrium was achieved in about 60 min. The adsorption of Hg2+ ions onto PHEMA beads was negligible (0.3 mg/g). The MALA incorporation into the polymer structure significantly increased the mercury adsorption capacity (168 mg/g). Adsorption capacity of MALA containing beads increased significantly with pH. The adsorption of Hg2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cd2+, Cu2+, Pb2+, and Hg2+ was also investigated. The adsorption capacities are 44.5 mg/g for Hg2+, 6.4 mg/g for Cd2+, 2.9 mg/g for Pb2+, and 2.0 mg/g for Cu2+ ions. These results may be considered as an indication of higher specificity of the poly(HEMA–MALA) beads for the Hg2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for poly(HEMA–MALA) chelating beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1222–1228, 2006  相似文献   

17.
A thiol-functionalized magnetite/graphene oxide (MGO) hybrid as an adsorbent of Hg2+ was successfully synthesized by a two-step reaction. It exhibited a higher adsorption capacity compared to the bare graphene oxide and MGO due to the combined adsorption of thiol groups and magnetite nanocrystals. Its capacity reached 289.9 mg g-1 in a solution with an initial Hg2+ concentration of 100 mg l-1. After being exchanged with H+, the adsorbent could be reused. The adsorption of Hg2+ by the thiol-functionalized MGO fits well with the Freundlich isotherm model and followed pseudo-second-order kinetics.  相似文献   

18.
《分离科学与技术》2012,47(15):3493-3501
Abstract

The synthesis of new N‐donor pyridylpyrazole ligands with a functionalized arm is described. The complexation capabilities of these compounds towards bivalent metal ions (Hg2+, Cd2+, Pb2+, Cu2+, and Zn2+) and alkali metal ions (K+, Na+, and Li+) were investigated using the liquid‐liquid extraction process. The percentage limits of extraction were determined by atomic absorption measurements.  相似文献   

19.
Dextrin as a biodegradable natural polymer has hydrophilic nature that capable to increase the swelling properties and biodegradability of the synthetic hydrogels. This study describes the synthesis of a poly (acrylic acid-co-acryloyl tetrasodium thiacalix[4]arene tetrasulfonate) grafted dextrin superabsorbent hydrogels (ADA) via solution polymerization. The effects of acryloyl tetrasodium thiacalix[4]arene tetrasulfonate (ACSTCA) dose (20–60) on swelling properties of the hydrogels were studied. The synthesized hydrogels were characterized by FTIR, TGA, DMTA and rheometry. The metal ion removal capacity of the gels was investigated by atomic absorption for Cd2+, Pb2+, and Hg2+. The tendency of metal ions adsorption decreased in the order of Pb2+>Cd2+>Hg2+. The effect of key operating parameters including ACSTCA content, contact time, adsorbent dosage, solution pH, and crosslinker density was experimentally studied on Pb2+ adsorption from aqueous solution. The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms. Our experimental data are in best agreement with Freundlich isotherms, and adsorption of metal cation onto hydrogel followed a pseudo second-order kinetic model. According to the thermodynamic parameters, the adsorption of Pb2+ occurred spontaneously. The hydrogels could be regenerated after releasing heavy metal ions, and reused 5 times with less than 7 % loss of adsorption capacity.  相似文献   

20.
Jinwoo Lee  Yosun Hwang  Hyun Min Park 《Carbon》2005,43(12):2536-2543
Magnetically separable ordered mesoporous carbon containing magnetic nanoparticles embedded in the carbon walls was synthesized using a simple synthetic procedure. The resulting magnetically separable mesoporous carbon was denoted as M-OMC (magnetically separable ordered mesoporous carbon) poly(pyrrole) with residual Fe2+ ions in the mesoporous channel was converted to carbon material containing superparamagnetic nanoparticles. The size of the magnetic nanoparticles obtained was restricted by the channel size of the SBA-15 silica template, which resulted in the generation of superparamagnetic nanoparticles embedded in the carbon rods. The blocking temperature of M-OMC is 110 K. Pore size and textural property of M-OMC is similar to that of hexagonally ordered mesoporous carbon fabricated using SBA-15 silica as a template. The saturation magnetization of M-OMC is ca. 30.0 emu/g at 300 K, high enough for magnetic separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号