首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emissions from road transport are serious threats to urban air quality and global warming. The first step to develop effective policies is to determine the source and amount of emissions produced. This paper attempts to review emissions from road transport using COPERT 4 model and examined possible emission mitigation strategies. In road transport, results have show that passenger cars are the main cause of CO2, N2O and CO emissions, while motorcycles are main source of hydrocarbon (HC) emissions. However, light duty vehicles and heavy duty vehicles are the main contribution of particulate matters. The total CO2 equivalent emissions for road transport in Malaysia are 59,383.51 ktonnes for year 2007. Further results show that CO2 emission is the primary source of greenhouse gas pollution which is 71% of the total CO2 equivalent. A parametric study was conducted to estimate the potential emission mitigation strategies for road transport by taking the emissions in 2007 as a reference year. It was observed that promoting the public transport is an effective strategy to reduce emissions and fuel consumption from the technical view point. It can totally save up to 1044 ktonnes of fuel consumption and total CO2 equivalents emissions can be decreased by 7%. It was noted that, fleet renewal and promoting natural gas vehicles will significantly contribute in the reduction of emissions in Malaysia.  相似文献   

2.
This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.  相似文献   

3.
The Algerian transport sector is still largely dependent on petroleum. Pollution emitted by this sector is constantly increasing with the expansion of the automobile fleet. Thus, there is a pressing need for use of cleaner and economically viable alternative fuels. Therefore, the use of Hydrogen enriched Compressed Natural Gas (HCNG) is expected to play a significant role to reach this target. When hydrogen and natural gas are used together in an internal combustion engine, large benefits are possible. Algeria has significant resources and potential to introduce this new fuel. The development of HCNG as a transportation fuel allows an entry point for hydrogen in the transportation sector. The aim of this paper is to discuss strategic ways to introduce HCNG as road fuel, in Algeria. Two fundamental strategic elements were designed to introduce the Hydrogen Enriched Natural Gas as a transportation fuel. These are, the development of compressed natural gas as a road fuel, and the completion of the MedHySol project. The MedHySol project includes the production and the distribution of solar produced hydrogen, and involves the project HySolThane intended for the development of HCNG fuel road with 8% vol of Hydrogen in Natural Gas.  相似文献   

4.
The rapid growth of urban population and the development of road infrastructures in Tunisian cities have brought about many environmental and economic problems, including the rise scored in energy consumption and the increase in the quantity of gas emissions arising from road transport. Despite the critical nature of such problems, no policies have yet been adopted to improve energy efficiency in the transport sector. This paper aims to determine driving factors of energy consumption change for the road mode. It uses decomposition analysis to discuss the effects of economic, demographic and urban factors on the evolution of transport energy consumption. The main result highlighted in the present work is that vehicle fuel intensity, vehicle intensity, GDP per capita, urbanized kilometers and national road network are found to be the main drivers of energy consumption change in the road transport sector during 1990–2006 period. Consequently, several strategies can be elaborated to reduce road transport energy. Economic, fiscal and regulatory instruments can be applied in order to make road transport more sustainable.  相似文献   

5.
When discussing how society can decrease greenhouse gas emissions, the transport sector is often seen as posing one of the most difficult problems. In addition, the transport sector faces problems related to security of supply. The aim of this paper is to present possible strategies for a road transport system based on renewable energy sources and to illustrate how such a system could be designed to avoid dependency on imports, using Sweden as an example. The demand-side strategies considered include measures for decreasing the demand for transport, as well as various technical and non-technical means of improving vehicle fuel economy. On the supply side, biofuels and synthetic fuels produced from renewable electricity are discussed. Calculations are performed to ascertain the possible impact of these measures on the future Swedish road transport sector. The results underline the importance of powerful demand-side measures and show that although biofuels can certainly contribute significantly to an import-independent road transport sector, they are far from enough even in a biomass-rich country like Sweden. Instead, according to this study, fuels based on renewable electricity will have to cover more than half of the road transport sector’s energy demand.  相似文献   

6.
European freight transport emissions and fuel consumption are projected to increase. This study focuses on long distance freight transport (LDFT) and explores possible sustainable futures through quantitative modeling. The evaluation was part of European foresight process between researchers, policy makers and freight companies (FREIGHTVISION). Greenhouse gas (GHG) emissions and energy demand of road, rail and inland waterways were estimated for an EU-27 in 2005. Development was extrapolated to 2050 based on technology and freight performance forecasts. Stakeholders found the forecasted GHG emissions and fossil fuel share unsustainable, so alternative futures were developed with backcasting. The developed emission model was run with random parameter combinations to screen a set of sustainable futures, with an 80% reduction of GHG emissions and fossil fuel share. Freight transport performance was not controlled in the backcasts, but several sustainable futures were found if significant changes in transport efficiency and energy mix are implemented. In spite of agreeing on the importance of reducing emissions, stakeholders had difficulties in choosing a preferred technological future. Simple models were found to be an effective tool for communicating the influence of various measures. Further research is recommended to screen preferable technological roadmaps from the broad range of available futures.  相似文献   

7.
Road transport is one of the sectors with highest energy consumptions in the planet, with large dependence of fossil fuels, and contribution for global greenhouse gas emissions. Although, Latin America is not a high-energy consumer, its share in global consumption is expected to grow, especially in the transportation sector. This make essential for developing countries the adoption of better policies to identify the vehicle groups with largest fuel demands. The present study describes the VKT technique to disaggregate road transport energy consumption by vehicle type, applied to the road transportation system of Ecuador. It also describes the procedures performed to estimate the variables required to run the model, and some of the practical applications that be used to create public policies. Results show as the biggest fuel consumers the heavy-duty freight cargo, followed by light duty vehicles. The estimation of greenhouse gas emissions evidence that road transport released 14.3 million tons of CO2 in 2012. When fuel consumption is compared by it costs, it can be confirmed that Ecuadorean Government covered, through subsidies, for 68% of the annual fuel costs of national road transport, demonstrating the importance of restructuring these expenditures in order to achieve an efficient road transport system.  相似文献   

8.
Malaysia and Indonesia benefit in various ways by participating in CDM and from investments in the GHG emission reduction projects, inter alia, technology transfer such as carbon capture (CC) technology for the existing and future coal fired power plants. Among the fossil fuel resources for energy generation, coal is offering an attractive solution to the increasing fuel cost. The consumption of coal in Malaysia and Indonesia is growing at the fastest rate of 9.7% and 4.7%, respectively, per year since 2002. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tons in 2005 to 36 million tons in 2020. In Indonesia, the coal consumption for the same cause is projected to increase from 29.4 million tons in 2005 to 75 million tons in 2020. CO2 emission from coal fired power plants are forecasted to grow at 4.1% per year, reaching 98 million tons and 171 million tons in Malaysia and Indonesia, respectively.  相似文献   

9.
近年来,上海高能源消耗对大气环境的影响逐渐得到关注,PM2.5的研究也引起了广泛的重视.通过分析上海各能源种类的消耗,结合不同能源消耗过程中PM2.5的排放因子,定量估算了上海2010年和2011年煤、成品油、天然气等10种主要能源的PM2.5排放量.分析结果显示,煤、成品油消耗量和其PM2.5排放量的比率均过大,两者大约都是天然气的2倍.  相似文献   

10.
在我国中长期的终端能源需求中石油将占约15%的份额,其中55%~60%将被用于交通运输行业。逐步减少交通运输领域石油能源产品的使用量,对减少能源消费总量和二氧化碳排放量十分重要。目前国内外研究机构预测的中国2050年货运周转总量(8×104~9×104Gt.km)及公路货运周转量均明显偏高,造成预测的运输燃料消耗量太高,这也反映出调整中国经济产业结构和进出口贸易结构的紧迫性。减少私人乘用车的拥有量和出行量也是节能减排的关键,采用西方发达国家私人乘用车的比例,预测中国2050年将拥有5×108~6×108辆乘用车不符合中国人口众多、城市中心区人口密度的特点,将乘用车数量控制在3.0×108辆的水平比较恰当。目前全球运输领域二氧化碳排放量约占总排放量的20%~25%,中国运输领域的二氧化碳排放量将逐步上升,占总排放量的份额将从目前的7%提高到2050年的30%以上。应努力采取各种措施,使2050年乘用车的二氧化碳排放强度降低到40g/km的水平。除了减少化石能源石油产品使用量、使用生物质燃料、推广纯电动汽车和开发燃料电池汽车外,改变出行方式、发展方便快捷的公共交通显得十分重要。预计我国2050年燃料电池汽车将占到小汽车保有量的20%左右,纯电动汽车占30%左右,各种混合动力汽车将占50%左右。为了使中国2050年二氧化碳排放总量控制在40×108~50×108t的水平,有可能也有必要将石油的使用量控制在6.0×108t,交通运输领域石油能源产品使用量控制在4.0×108t以下。  相似文献   

11.
Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The ‘Best Case’ scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the ‘Best Case’ scenario and the relative reduction potentials of each measure have been estimated.  相似文献   

12.
Fast depletion of fossil fuels is demanding an urgent need to carry out research work to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. The technology for producing hydrogen from a variety of resources, including renewable, is evolving and that will make hydrogen energy system as cost-effective. Hydrogen safety concerns are not the cause for fear but they simply are different than those we are accustomed to with gasoline, diesel and other fossil fuels. For the time being full substitution of diesel with hydrogen is not convenient but use of hydrogen in a diesel engine in dual fuel mode is possible. So Hydrogen has been proposed as the perfect fuel for this future energy system. The experiment is conducted using diesel–hydrogen blend. A timed manifold induction system which is electronically controlled has been developed to deliver hydrogen on to the intake manifold. The solenoid valve is activated by the new technique of taking signal from the rocker arm of the engine instead of cam actuation mechanism. In the present investigation hydrogen-enriched air has been used in a diesel engine with hydrogen flow rate at 0.15 kg/h. As diesel is substituted and hydrogen is inducted, the NOx emission is increased. In order to reduce NOx emission an EGR system has been developed. In the EGR system a lightweight EGR cooler has been used instead of bulky heat exchanger. In this experiment performance parameters such as brake thermal efficiency, volumetric efficiency, BSEC are determined and emissions such as oxides of nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, smoke and exhaust gas temperature are measured. Dual fuel operation with hydrogen induction coupled with exhaust gas recirculation results in lowered emission level and improved performance level compared to the case of neat diesel operation.  相似文献   

13.
交通运输业能耗现状及未来走势分析   总被引:4,自引:0,他引:4  
周新军 《中外能源》2010,15(7):9-18
低碳经济要求交通运输有效、合理地使用能源,优化配置各种交通工具,降低能耗。近年来,我国交通运输业能耗增长率总体上高于全社会能耗增长率,占全社会能耗比重基本维持在7.5%左右。各种运输方式的能耗主要集中在油耗上,2007年交通运输业汽煤柴3种油耗叠加在一起,占全社会油耗比重近70%。交通运输中电能利用效率较高,节电效果好于全社会,电耗占全社会电耗比重从2002年的2.07%降至2007年的1.63%,但占全国交通运输能耗比重仅10%左右,能耗结构不合理现象并未得到改善。2008年国家铁路单位运输工作量综合能耗比上年降低3.1%,2009年我国铁路电气化率达到41.9%,铁路能耗结构出现根本性改善和优化,开始转变为以电耗为主。公路运输油耗总量呈快速增长趋势,百吨公里油耗指标呈稳中略升态势,节能空间和潜能较大。水运(含港口)能耗2004年之前呈上升趋势,之后下降趋势明显,约占交通运输业总能耗的15%。民航每吨公里油耗从2002年的0.364kg降至2007年的0.309kg,航油消耗增长率基本维持在12%上下,有较为明显的减弱趋势。未来10年,我国交通运输能源消耗总量将进一步攀升,虽然能耗结构将得到一定程度优化,电耗比重会迅速增长,但由于公路能耗在交通运输能耗中占有绝对比重,故难以从根本上改善交通运输以油耗为主的结构特点。我国交通运输业应逐步调整到以铁路为主导的各种交通方式协调发展的模式上来,最大限度地降低运输业油耗在整个交通运输行业中的比重,"以电代油"。  相似文献   

14.
The global rise of greenhouse gas (GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. Alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. However, the overall transport policy framework in major world economies is geared towards the use of conventional fossil fuels. This paper evaluates the effectiveness and efficiency of current climate policies for road transport that (1) target fuel producers and/or car manufacturers, and (2) influence use of alternative fuels and technologies. With diversifying fuel supply chains, carbon intensity of fuels and energy efficiency of vehicles cannot be regulated by a single instrument. We demonstrate that vehicles are best regulated across all fuels in terms of energy per distance. We conclude that price-based policies and a cap on total emissions are essential for alleviating rebound effects and perverse incentives of fuel efficiency standards and low carbon fuel standards. In tandem with existing policy tools, cap and price signal policies incentivize all emissions reduction options. Design and effects of cap and trade in the transport sector are investigated in the companion article (Flachsland et al., in this issue).  相似文献   

15.
The road transport and particularly the passenger cars are responsible for increasing the share of transport energy consumption and harmful emissions level growth. The fuel economy label is an informative tool to influence customers and manufacturers to put special care to the energy efficiency issue. The implementation of fuel economy label for motor vehicles in Malaysia will prevent the up going trend of petroleum consumption which will be beneficial to consumer and society. As a consequence, the harmful greenhouse gas (GHG) emissions that are the main causes of the global warming and air pollution will be reduced. Studies in developed countries show that implementing the fuel economy label is beneficial for society, government and the environment. This paper focused on a review of international experiences on fuel economy label. It also attempts to discuss about the energy savings possibilities that lead to reduce GHG emissions by implementing the program. The last but not least recommendation is the fact that the sooner the fuel economy label applies for the passenger cars in Malaysia will be more beneficial for the country.  相似文献   

16.
This paper develops a system dynamics model of Iceland׳s energy sector (UniSyD_IS) that is based on the UniSyD_NZ model of New Zealand׳s energy economy. The model focuses on the energy supply sector with endogenous representation of road transport energy demand. Equilibrium interactions are performed across electricity, hydrogen, biofuels, and road transport sectors. Possible transition paths toward a low-carbon transport in Iceland are explored with implications for fuel demand, greenhouse gas (GHG) emissions and associated costs. The consumer sector simulates the long-term evolution of light and heavy-duty vehicles through a vehicle choice algorithm that accounts for social influences and consumer preferences. Through different scenarios, the influences of four fundamental driving factors are examined. The factors are oil price, carbon tax, fuel supply-push, and government incentives. The results show that changes in travel demand, vehicle technologies, fuel types, and efficiency improvements can support feasible transition paths to achieve sufficient reduction in GHG for both 4 °C and 2 °C climate scenarios of the Nordic Energy Technology Perspectives study. Initial investment in supply infrastructure for alternative fuels will not only mitigate GHG emissions, but also could provide long-term economic benefits through fuel cost saving for consumers and reduced fuel import costs for government.  相似文献   

17.
This paper examines a detailed study of fuel lean reburning process applied to a 1.5 MW gas-fired boiler. Experimental and numerical studies were carried out to investigate the effect of the fuel lean reburning process on the NOX reduction and CO emission. Natural gas (CH4) was used as the reburn as well as the main fuel. The amount of the reburn fuel, injection location and thermal load of boiler were considered as experimental parameters. The flue gas data revealed that the fuel lean reburning process led to NOX reduction up to 43%, while CO emission was limited to less than 30 ppm for the 100% thermal load condition. The commercial computational fluid dynamics code FLUENT 6.3, which included turbulence, chemical reaction, radiation and NO modeling, was used to predict the fluid flow and heat transfer characteristics under various operational conditions in the boiler. Subsequently, predicted results were validated with available measured data such as gas temperature distributions and local mean NOX concentrations. The detailed numerical results showed that the recirculation flow developed inside the boiler was found to play an important role in improving the effectiveness of fuel lean reburning process.  相似文献   

18.
Nobody can doubt today that hydrogen will, in the not-too-distant future, represent a very significant percentage of the total energy used by the transport sector. This study therefore consists of the modelling and simulation of energy consumption, by type of vehicle and fuel or energetic vector, in the road transport sector of the Madrid Region, during the period 2010–2050, using the MARKAL model. It has been necessary to complete this model by adding numerous specifications in order to determine the features of the Madrid Region, the richest Region in Spain. For the purpose of the study, three growth scenarios, based on short-term energy forecasts made by different official organizations, have been proposed for the energy consumption of the road transport sector in the Region. The results show a profound change in the current situation as there is a significant decrease in the consumption of fossil fuels and an increase in that of alternative non-fossil fuels and hydrogen. The latter, in particular, will rise from 0.1% in the year 2010, to around 50% in the year 2050, which will mean a drastic drop in the sector's CO2 and atmospheric pollutant emissions.  相似文献   

19.
This paper estimates the consequences in fuel consumption and greenhouse gas emission due to the possible intervention of the electric run trolley buses in the existing public transport system in a particular road up to the year 2025 in Kathmandu Valley. It projects the scenarios on the basis that the passenger travel demand is the function of population and income. Basically, it uses the Long Range Energy Alternatives Planning System software to develop Business as Usual scenario and the five alternative scenarios. The alternative scenarios are 100% replacement of vehicles catering to mass-transit in the concerned routes, 50% replacement, 25% replacement, stopping future growth of other vehicles catering to mass-transit in the concerned routes and 25% replacement in the first year, and combination scenarios. The results estimate that the passenger travel demand will increase by three folds from the year 2003 to the year 2025. It projects the three-fold increase of the existing vehicle activity by the year 2025 in Business as Usual scenario. The fuel consumption will increase by 2.4 times compared to the year 2003. It estimates the total greenhouse gas (GHG) emission as 8.5 thousands tons in year 2003 which will increase by more than 3 times in year 2025. It estimates that 174.3 thousands t CO2e can be avoided in combination scenario. The paper concludes that the intervention of clean energy transport in the existing public transport can have a significant positive impact on the GHG emission and current fuel consumption.  相似文献   

20.
Influence of biodiesel on engine combustion and emission characteristics   总被引:1,自引:0,他引:1  
This paper discusses the influence of biodiesel on the engine combustion characteristics. The considered fuel is neat biodiesel from rapeseed oil. The considered engine is a bus diesel engine with injection M system. The engine characteristics are obtained by experiments and numerical simulation. The results obtained with biodiesel are compared to those obtained with mineral diesel under various operating regimes. In this way, the influences of biodiesel usage on the injection pressure, injection timing, ignition delay, in-cylinder gas pressure and temperature, heat release rate, exhaust gas temperatures, harmful emissions, specific fuel consumption, and on engine power are analyzed. Furthermore, the relationships among fuel properties, injection and combustion characteristics, harmful emissions, and other engine performance are determined. Special attention is given to possible explanations of higher NOx emission in spite of lower in-cylinder gas temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号