首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liberalizing the electricity industry and attempting to reduce the emissions of greenhouse gases are the two dominant trends in European energy policy. The last-mentioned issue might require the contribution from renewable energy technologies, but at present most renewables cannot compete on their own with conventional technologies. Thus, it can be expected that if renewables must compete solely on market conditions alone this will slow down or even halt the development of new renewable capacity. One model in which additional payments to renewable technologies are generated is based on the development of a separate green market. In Holland a voluntary green certificate market has existed since the beginning of 1998. In Denmark a comprehensive restructuring of the legislation for the electric power industry has just been completed, including the framework for developing a separate green market for renewable electricity production. The main objectives of introducing this type of electricity market in Denmark is to secure the development of renewable energy technologies (including contributions to greenhouse gas reductions), while at the same time releasing the Government from the (by now) quite heavy burden of subsidising renewable technologies. Finally, a green market will make it possible for these renewable technologies to be partly economically compensated for the environmental benefits, which they generate compared to conventional power production. With the recent Danish legislation as starting point this paper analyzes possible ways to set up a green certificate market, treating as well some of the consequences produced when the market is actually funtioning. The analysis is applicable for all renewable technologies, but special attention is given to wind power.  相似文献   

2.
Facing growing technological and environmental challenges, the electricity industry needs effective pricing mechanism to promote efficient risk management and investment decisions. In a restructured electricity market with competitive wholesale prices and traditionally regulated retail rates, however, there are technical and institutional barriers that prevent dynamic pricing with price responsive demand. In regions with limited energy storage capacity, intermittent renewable resources present special challenges. This could adversely affect the effectiveness of public policies causing inefficient investments in energy technologies. In this paper, we present an updated economic model of pricing and investment in restructured electricity market and use the model in a simulation study for an initial assessment of renewable energy strategy and alternative pricing mechanisms. A key objective of the study is to shed light on the policy issues so that effective decisions can be made to improve efficiency.  相似文献   

3.
Financing investments in renewable energy : the impacts of policy design   总被引:1,自引:0,他引:1  
The costs of electric power projects utilizing renewable energy technologies (RETs) are highly sensitive to financing terms. Consequently, as the electricity industry is restructured and new renewables policies are created, it is important for policymakers to consider the impacts of renewables policy design on RET financing. This paper reviews the power plant financing process for renewable energy projects, estimates the impact of financing terms on levelized energy costs, and provides insights to policymakers on the important nexus between renewables policy design and financing. We review five case studies of renewable energy policies, and find that one of the key reasons that RET policies are not more effective is that project development and financing processes are frequently ignored or misunderstood when designing and implementing renewable energy policies. The case studies specifically show that policies that do not provide long-term stability or that have negative secondary impacts on investment decisions will increase financing costs, sometimes dramatically reducing the effectiveness of the program. Within U.S. electricity restructuring proceedings, new renewable energy policies are being created, and restructuring itself is changing the way RETs are financed. As these new policies are created and implemented, it is essential that policymakers acknowledge the financing difficulties faced by renewables developers and pay special attention to the impacts of renewables policy design on financing. As shown in this paper, a renewables policy that is carefully designed can reduce renewable energy costs dramatically by providing revenue certainty that will, in turn, reduce financing risk premiums.  相似文献   

4.
Historically the promotion of renewable energy technologies in isolated areas has involved international donors or governments subsidising the initial capital investment. This paper proposes an alternative support mechanism for remote villages based on the generation of renewable electricity. This communication presents an evaluation of the Renewable Energy Premium Tariff (RPT) scheme, a locally adapted variation of the Feed-in Tariff tailored for decentralised grids of developing countries. The RPT scheme stimulates the deployment of renewable energy technologies by paying for renewable electricity generated. A good-quality performance is secured since the support is given based on the electricity produced by renewables, not for the initial capital investment.  相似文献   

5.
There have been three Orders of the renewables NFFO and a fourth has recently been announced. This paper explains the creation of the NFFO, the application procedures for each Order and the status of the contracts for each Order. It goes on to discuss the key lessons to be learnt from the process: namely that a market enablement programme should coordinate with the R&D programme; second, that competition as the basis for support of renewables, while bringing prices down rapidly, has a number of disbenefits; third, that the NFFO process has led to the development of renewable energy industry in the UK with a stake in its future; fourth, the deployment of renewable energy technologies as a result of the NFFO has led to a dawning of an understanding by the renewable energy industry of the key issues that renewable energy has to address and the importance of the attitudes of the financial institutions and electricity systems to the successful outcome of those issues; fifth, it describes the development of a de facto policy for renewable energy by OFFER; and finally, that the renewable support mechanism should be coordinated with a planning policy.  相似文献   

6.
This study aims to analyse the developments in renewable energy policy making in Sweden. It assesses the energy policy context, changes in the choice of policy instruments, and provides explanations behind policy successes and failures. Swedish renewable energy policy has been developing in a context of uncertainty around nuclear issues. While there has been made a political decision to replace nuclear power with renewables, there is a lack of consensus about the pace of phasing out nuclear power due to perceived negative impacts on industrial competitiveness. Such uncertainty had an effect in the formulation of renewable energy policy. Biomass and wind power are the main options for renewable electricity production. Throughout 1990s, the combined effect of different policy instruments has stimulated the growth of these two renewable sources. Yet, both biomass and wind power are still a minor contributor in the total electricity generation. Lack of strong government commitment due to uncertainty around nuclear issues is a crucial factor. Short-term subsidies have been preferred rather than open-ended subsidy mechanisms, causing intervals without subsidies and interruption to development. Other factors are such as lack of incentives from the major electricity companies and administrative obstacles. The taxation system has been successful in fostering an expansion of biomass for heating but hindered a similar development in the electricity sector. The quota system adopted in 2003 is expected to create high demand on biomass but does not favour wind power. The renewable energy aims are unlikely to be changed. Yet, the future development of renewable energy policies especially for high-cost technologies will again depend strongly on nuclear policies, which are still unstable and might affect the pace of renewable energy development.  相似文献   

7.
The objective of this article is to examine the consequences of technological developments on the market diffusion of different renewable electricity technologies in the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system will be implemented, and a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that diffusion of onshore wind energy is relatively robust, regardless of technological development, but diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and (existing) biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic scenario, in 2020 the market price for RES-E is 1 €ct/kWh lower than in the pessimistic scenario (about 7 vs. 8 €ct/kWh). As a result, total RES-E production costs are 19% lower, and total governmental expenditures for RES-market stimulation are 30% lower in the optimistic scenario.  相似文献   

8.
The trading activity in the German intraday electricity market has increased significantly over the last years. This is partially due to an increasing share of renewable energy, wind and photovoltaic, which requires power generators to balance out the forecasting errors in their production. We investigate the bidding behaviour in the intraday market by looking at both last prices and continuous bidding, in the context of a reduced-form econometric analysis. A unique data set of 15-minute intraday prices and intraday-updated forecasts of wind and photovoltaic has been employed. Price bids are explained by prior information on renewables forecasts and demand/supply market-specific exogenous variables. We show that intraday prices adjust asymmetrically to both forecasting errors in renewables and to the volume of trades dependent on the threshold variable demand quote, which reflects the expected demand covered by the planned traditional capacity in the day-ahead market. The location of the threshold can be used by market participants to adjust their bids accordingly, given the latest updates in the wind and photovoltaic forecasting errors and the forecasts of the control area balances.  相似文献   

9.
Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil.  相似文献   

10.
Cost-effectiveness of renewable electricity policies   总被引:4,自引:0,他引:4  
We analyze policies to promote renewable sources of electricity. A portfolio standard (RPS) raises electricity prices and primarily reduces gas-fired generation. A knee of the cost curve exists between 15% and 20% goals for 2020 in our central case, and higher natural gas prices lower the cost of greater reliance on renewables. A renewable energy production tax credit lowers electricity price at the expense of taxpayers, which limits its effectiveness in reducing carbon emissions, and it is less cost-effective at increasing renewables than a portfolio standard. Neither policy is as cost-effective as a cap-and-trade policy for achieving carbon emission reductions.  相似文献   

11.
The presence of renewable power generation technologies increases the need for system flexibility due to their variable nature. The increasing share of variable renewables in European power systems create a downward adequacy problem, which deals with the ability of power systems to cope with periods of excess generation. The occurrence of negative prices on Central Western European electricity markets confirms the relevance of this issue, which is referred to as “incompressibility of power systems” and is assessed as a barrier for further renewable power integration. The objective of this article is to identify the main drivers of negative price periods in European balancing markets, by means of both an empirical and regression analysis. Results confirm a positive relation with the scheduled generation of renewables and inflexible base load, as well as a negative relation with the scheduled system load. Furthermore, the occurrence of negative prices is related to the positive and negative forecast error of renewable generation and demand, respectively. It is concluded that negative balancing market prices provide a market signal for investments in flexibility sources such as flexible generation, demand response, electricity storage, and interconnector capacity.  相似文献   

12.
This article is mainly a counterpoint to an article by Swift-Hook in the journal of Renewable Energy titled “Grid-connected intermittent renewables are the last to be stored”. It also describes the four main distinct UK markets where electrical energy and services are traded, in order to provide a context for the discussion of renewable energy and energy storage in the UK electricity system. In Swift-Hook’s article it was argued that “grid-connected intermittent renewables like wind energy will never be stored unless nothing else is available” and that “storage is counter-productive for fuel saving”. We, however, find evidence that “grid-connected intermittent renewables” have been, and will continue to be stored when it suits the “UK market” to do so. Furthermore, Swift-Hook’s article neglects the potential wider benefits that storage offers to UK energy policy’s goals, in terms of reduced emissions (when used in conjunction with renewables) and enhanced security of supply.  相似文献   

13.
The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energy–environment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of techno–economic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socio–environmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.  相似文献   

14.
Renewable portfolio standard (RPS), which requires a certain percentage of electricity production from renewables, has received considerable attention. One emerging issue is the possibility of strategic behavior in the renewable energy certificate/credit (REC) market, and its spillover effects on the electricity market. This paper develops dominant firm-competitive fringe models that account for market power. We show that market power could have significant impacts on the REC and power prices. In particular, when a nonrenewable generator is a dominant firm and a renewable generator is a competitive fringe, the nonrenewable firm has a strong incentive to lower the REC price, even to zero for avoiding REC costs. The zero REC price would negate price impacts in the power market, thereby mitigating market power of the dominant firm. However, this could lead to an underinvestment in renewables in the long run as subsidies received by renewables in form of RECs vanish. Therefore, regulatory agencies need to carefully oversee the market performance to ensure a healthy development of renewable industries under the RPS policies.  相似文献   

15.
In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33–40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact.  相似文献   

16.
By 2050, the European Union aims to reduce greenhouse gases by more than 80%. The EU member states have therefore declared to strongly increase the share of renewable energy sources (RES-E) in the next decades. Given a large deployment of wind and solar capacities, there are two major impacts on electricity systems: First, the electricity system must be flexible enough to cope with the volatile RES-E generation, i.e., ramp up supply or ramp down demand on short notice. Second, sufficient back-up capacities are needed during times with low feed-in from wind and solar capacities. This paper analyzes whether there is a need for additional incentive mechanisms for flexibility in electricity markets with a high share of renewables. For this purpose, we simulate the development of the European electricity markets up to the year 2050 using a linear investment and dispatch optimization model. Flexibility requirements are implemented in the model via ramping constraints and provision of balancing power. We found that an increase in fluctuating renewables has a tremendous impact on the volatility of the residual load and consequently on the flexibility requirements. However, any market design that incentivizes investments in least (total system) cost generation investment does not need additional incentives for flexibility. The main trigger for investing in flexible resources is the achievable full load hours and the need for backup capacity. In a competitive market, the cost-efficient technologies that are most likely to be installed, i.e., gas-fired power plants or flexible CCS plants, provide flexibility as a by-product. Under the condition of system adequacy, flexibility never poses a challenge in a cost-minimal capacity mix. Therefore, any market design incentivizing investments in efficient generation thus provides flexibility as an inevi complement.  相似文献   

17.
This paper discusses the impact of bulk electric storage on the production from dispatchable power plants for rising variable renewable electricity shares. Two complementary optimization frameworks are used to represent power systems with a varying degree of complexity. The corresponding models approximate the wholesale electricity market, combined with the rational retirement of dispatchable capacity. Two different generic storage technologies are introduced exogenously to assess their impact on the system.The analysis covers two countries: France, where the power supply's large nuclear share allows for the discussion of storage impact on a single generator type; and Germany, whose diverse power supply structure enables storage interactions with multiple electricity generators. In the most general case, additional storage capacity increases dispatchable power production (e.g. nuclear, coal) for small wind and solar shares, i.e. it compensates the replacement induced by renewable energies. For larger variable renewable electricity volumes, it actively contributes to dispatchable power replacement. In a diverse power system, this results in storage-induced sequential mutual replacements of power generation from different plant types, as wind and solar capacities are increased.This mechanism is strongly dependent on the technical parameters of the storage assets. As a result, the impact of different storage types can have opposite signs under certain circumstances. The influence of CO2 emission prices, wind and solar profile shapes, and power plant ramping costs is discussed.  相似文献   

18.
Around the globe, intermittent renewable energies in the form of wind and solar power are on the rise. Their subsidization can be seen as a market intervention, which may deter optimal investment. Thus, this study tests the effect of renewable energies on investment in conventional electricity generation technologies. We estimate a dynamic investment model for 14 European economies for the period 2004–2016 and find a non-negligible negative impact of intermittent renewables on investment in peak-load capacity (mainly gas), while base-load (particularly coal) plants are unaffected. However, the production flexibility of gas-fired plants represents a particularly vital function to balance the supply intermittency of wind and solar. Thus, dispatchable conventional power plants are still necessary to back the system under scarcity events, such as unfavorable weather conditions during high electricity demand. Policymakers should be aware of the adverse effects of RES on investment in peak-load plants and may consider a redesign of the current system, for example by introducing capacity markets.  相似文献   

19.
This study presents a policy planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price uncertainty is introduced through stochastic processes for the average wholesale price of electricity and for input fuel prices. Demand for electricity is assumed to be increasingly price-sensitive, as the electricity market deregulation proceeds, reflecting new options of consumers to react to electricity price changes (such as time-of-use pricing, unbundled electricity services, and choice of supplier). The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policy-making, it provides some interesting insights about the impact of uncertainty and technical change on the diffusion of various emerging renewable energy technologies.  相似文献   

20.
There are considerable benefits from cooperating among member states on meeting the 2020 renewable energy sources (RES) targets. Today countries are supporting investments in renewable energy by many different types of support schemes and with different levels of support. The EU has opened for cooperation mechanisms such as joint support schemes for promoting renewable energy to meet the 2020 targets. The potential coordination benefits, with more efficient localisation and composition of renewable investment, can be achieved by creating new areas/sub-segments of renewable technologies where support costs are shared and credits are transferred between countries.Countries that are not coordinating support for renewable energy might induce inefficient investment in new capacity that would have been more beneficial elsewhere and still have provided the same contribution to meeting the 2020 RES targets. Furthermore, countries might find themselves competing for investment in a market with limited capital available. In both cases, the cost-efficiency of the renewable support policies is reduced compared to a coordinated solution.Barriers for joint support such as network regulation regarding connection of new capacity to the electricity grid and cost sharing rules for electricity transmission expansion are examined and examples given. The influence of additional renewable capacity on domestic/regional power market prices can be a barrier. The market will be influenced by for example an expansion of the wind capacity resulting in lower prices, which will affect existing conventional producers. This development will be opposed by conventional producers, whereas consumers will support such a strategy.A major barrier is the timing of RES targets and the uncertainty regarding future targets. We illustrate the importance of different assumptions on future targets and the implied value of RES credits. The effect on the credit price for 2020 is presented in an exemplary case study of 200 MW wind capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号