首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors report a facile chemical precipitation method for the fabrication of a highly ordered mesoporous Mn2O3/MCM-41 composite. Examination of the acquired samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption measurement has provided fundamental insight into the structure and properties of the Mn2O3/MCM-41 composite. It is found that the as-prepared Mn2O3/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 793 m2 g−1. The performance of Mn2O3/MCM-41 composite as a remover was further demonstrated in the removal of azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB), and rhodamine B (RB) with/without visible light irradiation at room temperature. The results show that the Mn2O3/MCM-41 composite has an excellent removal performance for MB and RB, making it a promising candidate for wastewater treatment.  相似文献   

2.
Mesoporous aluminosilicates, Al-MCM-41 (Si/Al = 20 and 50), efficiently catalyzed Mukaiyama aldol reaction of benzaldehyde with 1-(trimethylsiloxy)cyclohexene in CH2Cl2 at 0 °C to afford the corresponding β-trimethylsiloxy ketone in quantitative yield. On the other hand, mesoporous silica (MCM-41), amorphous SiO2–Al2O3, and H–Y and H-ZSM-5 zeolites barely catalyzed the reaction. Additionally, the less ordered Al-MCM-41 prepared by mechanical compression exhibited much lower catalytic activity compared with Al-MCM-41, indicating that the presence of the ordered mesoporous structure in aluminosilicates is crucial for the catalysis. The Al-MCM-41 catalyzed Mukaiyama aldol reaction was applicable to a wide range of aldehydes and silyl enol ethers. Furthermore, the Al-MCM-41 catalyst could be recycled at least three times without any loss in the yield. Thus, mesoporous aluminosilicates are promising heterogeneous catalysts for fine chemicals synthesis.  相似文献   

3.
Co-modified mesoporous supports with MCM-41 structure and several metal loadings were successfully synthesized by a fast wet impregnation method. The nature and location of different Co species formed on the solids were inferred by TEM/SEM, XPS, XANES/EXAFS, adsorption of pyridine coupled to FT-IR spectroscopy and temperature dependence of magnetization. The presence of Co oxide species (clusters and Co3O4 nanoparticles) inside the channels of all the samples could be evidenced by TEM, XPS and XANES/EXAFS. In this sense, the surface Co/Si atomic ratios obtained by XPS were notably lower than the corresponding bulk Co/Si ratios obtained by ICP, indicating that the Co atoms are mostly incorporated inside the mesopores channels of the silica matrix. Nevertheless, by TEM, Co3O4 nanoparticles of small size segregated on the external surface of the silicate were also observed for the higher metal loadings. The temperature dependence of the magnetization performed for the Co/M(2.5) sample allowed to assign its superparamagnetic behavior to the presence of clusters and Co3O4 nanoparticles of very small size that grow inside the MCM-41 mesopores. Therefore, the analyses presented in this work indicate that a Co theoretical loading of 2.5 wt% leads to the formation of Co oxide nanospecies in the MCM-41 support with a particular superparamagnetic behavior. This sample with improved structural and magnetic properties result an attractive porous solid for drug hosting, to be applied in the field of the controlled release of medicaments.  相似文献   

4.
A detailed investigation was made into the production of high temperature lithium cobalt oxide (HT-LiCoO2) particles by continuous hydrothermal synthesis via the reaction of cobalt nitrate, lithium hydroxide, and hydrogen peroxide. The experiments were carried out in both subcritical and supercritical water, at temperatures ranging from 300 to 411 °C, with residence times less than 1 min in all instances. Although Co3O4 particles were synthesized in subcritical water at similar reaction conditions designed for comparison, well-ordered particles of HT-LiCoO2 were obtained in supercritical water. In supercritical conditions, the variations in temperature and residence time did not have significant impacts on the average particle size, particle size distribution, or morphology of obtained HT-LiCoO2. However, it was important to supply excessive lithium hydroxide and hydrogen peroxide in order to synthesize single-phased HT-LiCoO2 particles without undesired by-products. The hydrothermal synthetic route for LiCoO2, CoO, and Co3O4 in both subcritical and supercritical conditions was postulated.  相似文献   

5.
The potential application of hybrid ZSM-5/Al-MCM-41 zeolitic-mesostructured materials as supports of metallocene polymerization catalysts has been investigated and compared with the behaviour of standard mesoporous Al-MCM-41 and microporous ZSM-5 samples. Hybrid zeolitic-mesostructured solids were prepared from zeolite seeds obtained with different Si/Al molar ratios (15, 30 and 60), which were assembled around cetyltrimethylammonium bromide (CTAB) micelles to obtain hybrid materials having a combination of both zeolitic and mesostructured features. (nBuCp)2ZrCl2/MAO catalytic system was impregnated onto the above mentioned solid supports and tested in ethylene polymerization at 70 °C and 5 bar of ethylene pressure. Supports and heterogeneous catalysts were characterized by X-ray powder diffraction, nitrogen adsorption-desorption isotherms at 77 K, transmission electron microscopy, 27Al-MAS-NMR, ICP-atomic emission spectroscopy and UV-vis spectroscopy.Catalysts supported over hybrid ZSM-5/Al-MCM-41 (Si/Al = 30-60) exhibited the best catalytic activity followed by those supported on Al-MCM-41 (Si/Al = 30-60). However, catalyst supported on ZSM-5 gave lower polymerization activity because of its microporous structure with narrower pores and lower textural properties than hybrid and mesoporous materials.Although higher acid site population shown by hybrid materials could contribute to the stabilization of the metallocene system on the support, in this case their better catalytic performance is mainly ascribed to the larger textural properties.  相似文献   

6.
Carbon nanofiber (CNF) supported cobalt oxide composites as high-capacity anode materials were prepared through a facile, effective method for potential use in rechargeable lithium-ion batteries. The effects of the calcining temperature on the crystallinity, grain size, specific surface area of Co3O4 and phase transformation from Co3O4 to CoO were studied in detail. Both the specific surface area and CNF content in CNF-cobalt oxide composites strongly affect the electrochemical performance of these series composites. The CNF-Co3O4 composite with 24.3% CNF pyrolyzed at 500 °C in Ar shows an excellent cycling performance, retaining a specific capacity of 881 mAh g−1 beyond 100 cycles. Homogeneous deposition and distribution of nanosized Co3O4 particles on the surface of CNF can stabilize the electronic and ionic conductivity as well as the morphology of Co3O4 phase, which may be the main reason for the markedly improved electrochemical performance.  相似文献   

7.
《Catalysis communications》2010,11(15):1990-1994
Mesoporous aluminosilicates, Al-MCM-41 (Si/Al = 20 and 50), efficiently catalyzed Mukaiyama aldol reaction of benzaldehyde with 1-(trimethylsiloxy)cyclohexene in CH2Cl2 at 0 °C to afford the corresponding β-trimethylsiloxy ketone in quantitative yield. On the other hand, mesoporous silica (MCM-41), amorphous SiO2–Al2O3, and H–Y and H-ZSM-5 zeolites barely catalyzed the reaction. Additionally, the less ordered Al-MCM-41 prepared by mechanical compression exhibited much lower catalytic activity compared with Al-MCM-41, indicating that the presence of the ordered mesoporous structure in aluminosilicates is crucial for the catalysis. The Al-MCM-41 catalyzed Mukaiyama aldol reaction was applicable to a wide range of aldehydes and silyl enol ethers. Furthermore, the Al-MCM-41 catalyst could be recycled at least three times without any loss in the yield. Thus, mesoporous aluminosilicates are promising heterogeneous catalysts for fine chemicals synthesis.  相似文献   

8.
30 wt.%Co/SBA-15 catalysts with different ruthenium contents (0.05–0.5 wt.%) were prepared by incipient wetness impregnation and characterized by diffuse reflectance infrared fourier transform spectroscopy, N2 adsorption-desorption, X-ray diffractometry, temperature-programmed reduction and H2 desorption, oxygen titration as well as X-ray photoelectron spectroscopy. The addition of a small amount of Ru promoter to Co/SBA-15 shifted the reduction temperature of both steps (Co3O4 → CoO and CoO → Co0) to lower temperatures and suppressed the formation of Co2+ species. After reduction, ruthenium atoms were encapsulated partially with cobalt cluster. There was no strong electronic interaction between metal cobalt and ruthenium, however, hydrogen spillover from ruthenium to cobalt oxide clusters occurred. With increasing ruthenium content, catalyst reducibility increased and the surface was enriched in cobalt atoms. Moreover, the peak intensities of both the linear and bridge types CO adsorption increased with the increase of ruthenium content, enhancing the catalytic activity on Fischer–Tropsch synthesis.  相似文献   

9.
The catalytic properties of Pt, Rh and Co supported on mesoporous molecular sieves with MCM-41-type structure consisting of SiO2 and Al2O3 were studied for the reduction of NO with propene. Pt supported on siliceous MCM-41 was the most active catalyst, however, significant quantities of undesirable N2O were formed during the reaction. Pt supported on mesoporous Al2O3 and Rh supported on both mesoporous oxides showed a lower activity, but an improved selectivity towards N2 formation. Co supported on MCM-41-type materials had only a low level of activity for the reduction of NO with propene. For Pt supported on MCM-41-type materials only a minor decrease in the activity was observed when water vapor was added into the reactant gas mixture, while on Rh- and Co-containing catalysts the activity strongly decreased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The thermal and chemical stability of a titanium-substituted MCM-41 (TiMCM-41) with Si/Ti mole ratio of 39 and pore diameter of 2.4 nm was studied with the small-angle X-ray diffraction and X-ray absorption near-edge structure techniques. The TiMCM-41 was stable in helium flow below 1273 K and under gas-phase reaction conditions of ethanol dehydrogenation (ethanol/ O2 = 1 mol/mol, 373–723 K). Under liquid-phase reaction conditions of phenol hydroxylation (phenol/35% H2O2 /acetone in moles=317,333K), however, it lost the MCM-41structure and titanium was leached out of the silicalite framework.  相似文献   

11.
The study deals with the direct oxidation kinetics of micronic cobalt metal particles and its simulation for the complete transition from metal to ceramic. The simulation was also experimentally verified. All the three possible interfaces, Co/CoO, CoO/Co3O4 and Co3O4/O2 (air), have been taken into consideration for the simulation. The complete oxidation kinetics has been investigated from the thermogravimetric studies under isothermal conditions in the temperatures 973–1173 K. A quantitative interpretation based on the diffusion of Co or oxygen ions through the grown oxide layer has been proposed. The activation energy for the oxidation kinetics calculated from the Arrhenius law was 161 ± 20 kJ mol−1.  相似文献   

12.
Gallium-promoted sulfated zirconia (SZ) was confined inside pure-silica MCM-41 (abbreviated as SZGa/MCM-41), where the latter served as a host material. It was prepared by direct dispersion of metal sulfate in the as-synthesized MCM-41 materials, followed by thermal decomposition. The SZGa/MCM-41 catalysts were characterized by XRD, N2 adsorption, HRTEM, DRIFT, NH3-TPD, and TPR. The experimental results showed that the ordered porous host structure was still maintained in the catalyst. SZ was in meta-stable tetragonal phase and highly dispersed on the interior surface of MCM-41 even at a high loading of 50 wt%. Additionally, a small fraction of SZ nanoparticles on the external surface of MCM-41 was obtained. The catalytic activity of SZGa/MCM-41 was examined in n-butane isomerization. In comparison to SZ/MCM-41 without promoter, the catalytic activities of the Ga-promoted catalysts were greatly improved. The reason proposed for the higher activity of the Ga-promoted catalysts was that Ga enhances the oxidizing ability of the catalysts.  相似文献   

13.
Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.  相似文献   

14.
Design of base catalyst featuring large mesoporous surfaces allows performing base-catalysed reactions in the fields of production of perfumes. Post-synthesis grafting of organotrialkoxysilanes has effectively been applied to incorporate active organic functional groups onto the mesoporous silica surfaces. The novelty of our study is the use of mesoporous materials with different chemical compositions: silicate (MCM-41), aluminosilicate (AlMCM-41; Si/Al = 64) and niobosilicate (NbMCM-41; Si/Nb = 64) and consequently, different acidity, as supports for three aminopropylalkoxysilanes (APMS), [3-(2-aminoethylamino) propyl]trimethoxysilane (2APMS) and 3-[2-(2-aminoethylamino) ethylamino]propyltrimethoxysilane (3APMS). Isomerization of safrole to the corresponding thermodynamically stable isosafrole has been carried out on these amino-grafted MCM-41 materials. Maximum conversion of around 85% with a cis/trans ratio of 1/9 at 433 K in DMF as solvent was obtained. Isomerization is strongly dependent on the nature of the support and changed in the following order: APMS/AlMCM-41 > APMS/NbMCM-41 ? APMS/MCM-41. The nature of the amine chain is also responsible of the activity. The order of activity is APMS/AlMCM-41 > 2APMS/AlMCM-41 > 3APMS/AlMCM-41.  相似文献   

15.
The oxidation state of platinum supported on mesoporous SiO2 and Al2O3 with MCM-41 type structure during the reduction of NOx with propene or propane was investigated using in situ X-ray absorption spectroscopy. Platinum supported on MCM-41 (SiO2) was reduced at low and oxidized at high reaction temperatures when propene was used as reducing agent, while it was found to be always oxidized in Pt/MCM-41 (Al2O3). When propane was used as reducing agent significant NO conversion was not observed over Pt/MCM-41 (SiO2) and on both supports platinum was in an oxidized state. At the successive adsorption of the reactants, the prereduced catalysts were oxidized after NO adsorption and reduced after addition of the hydrocarbons. Addition of oxygen re-oxidized the catalysts, while the presence of water vapor did not influence the oxidation state.  相似文献   

16.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

17.
The compounds, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) are synthesised by the polymer precursor method. The structure and the morphology of the compounds are studied by the Rietveld refined X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques, respectively. Density and the Brunauer, Emmet and Teller surface area (BET) of the compounds are also studied. The cobalt doped compound, Li(Co1/6Mn11/6)O4 is found to be nanosized particles in the range of 60-100 nm, when compared to the other compounds in our present study. The oxidation state and the local structure of the compounds are analysed by the X-ray absorption spectroscopy (XAS) technique. Cyclic voltammetry (CV) and the galvanostatic charge-discharge cycling (30 mA g−1) studies are made in the voltage range of 3.5-4.3 V at room temperature for all the compounds under study. The bare and (Co1/6), and (Co1/12Cr1/12) substituted spinels are cycled at high current rates of 1, 2 and 5C (assuming 1C∼120 mA g−1). Cycling results of Co-substituted spinels show better and long-term capacity retention at all the current rates. At the end of the second cycle, Li(Co1/6Mn11/6)O4 compound delivers a discharge capacity value of 100 (±3) and 87 (±3) mAh g−1 for the current rate of 2 and 5C, respectively. An excellent capacity retention value of 94% is observed at the end of the 1000 cycles for both 2 and 5C rates.  相似文献   

18.
CuO/Bi2O3 (CuO/Bi2O3/MCM-41) nanoparticles supported on MCM-41 were synthesized by a facile impregnation method. The products were characterized by nitrogen adsorption/desorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR) and scanning electron microscopy (SEM). XRD patterns indicated the presence of crystalline CuO and Bi2O3 phase for CuO/Bi2O3/MCM-41 catalyst. TPR results revealed CuO nanoparticles were dispersed well on MCM-41. SEM results showed that the nanoparticles were located on the MCM-41. The activity of the catalysts towards ethynylation of formaldehyde for 1,4-butynediol synthesis was evaluated at atmospheric pressure. Compared with unsupported CuO/Bi2O3 and commercial Cu/Bi-based catalyst, CuO/Bi2O3/MCM-41 catalyst showed maximum conversion (51%) and selectivity (94%) towards 1,4-butynediol. The results show that CuO/Bi2O3 catalysts supported on MCM-41 have potential for 1,4-butynediol synthesis in industrial application.  相似文献   

19.
Catalysts consisting of cadmium incorporated into MCM-41 mesoporous molecular sieves (Cd-MCM-41) with Si/Cd = 80 have been synthesized by the hydrothermal method using cadmium acetate as the source of cadmium. This was then loaded with titania via the sol-gel method to explore the photoactivity in UV light. These two materials were characterized by various physicochemical techniques such as N2 physisorption, O2 chemisorption, diffuse reflectance UV-vis, X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). The pore size of the Cd-MCM-41 was higher and the BET surface area was lower than those commonly found in our siliceous MCM-41. This is due to the partial pore breakage, as recorded by pore size distribution analysis. The oxygen chemisorption results shows that the dispersion of cadmium is quite high, and decreased after loading of titania. The XRD patterns of Cd-MCM-41 and 25%TiO2/Cd-MCM-41 are similar to those of siliceous MCM-41; however, the intensity of the d 100 peak is decreased and the unit-cell parameter increased with titania loading. Raman spectra could not detect any peaks, whereas peaks were detected at 144, 397, 518 and 641 cm-1 with loading of titania, these peaks being associated with the anatase phase of titania. The surface composition and binding energy of the Cd 3d5/2 peak for Cd-MCM-41 and 25%TiO2/Cd-MCM-41 was analyzed by XPS and showed considerable infusion of cadmium ions on to the surface upon loading of titania. The Cd/Si surface atomic ratio measured by XPS increases 10 times with loading of titania on Cd-MCM-41, indicating that the two separate surface electronic levels such as Cd-O-Si and Cd-O-Ti were found for 25%TiO2/Cd-MCM-41. The 25%TiO2/Cd-MCM-41 showed higher activity than 25%TiO2/MCM-41 for photocatalytic degradation of formic acid. The activity results are compared with the pure titania based on the transformation per site of Ti.  相似文献   

20.
Desulfurization of JP-5 jet fuel (1172 ppmw S) was investigated by π-complexation adsorption with AgNO3 supported on mesoporous silica SBA-15 and MCM-41. The average pore sizes of AgNO3/SBA-15 and AgNO3/MCM-41 were 48.8 and 19.1 Å, respectively. The results of JP-5 desulfurization showed that significant sulfur breakthrough occurred at ∼10.0 and ∼15.0 mL/g by AgNO3/SBA-15 and AgNO3/MCM-41, respectively, at a space velocity of 1.25 h−1. The spent AgNO3/MCM-41 was regenerated by a simple process (heating in air at 200 °C) and ∼50% of the sulfur capacity was recovered after the first cycle. Molecular orbital calculations show that Cu+ (as that in CuY zeolite) formed stronger π-complexation bonding with the thiophenic compounds than Ag+ (in AgNO3), as evidenced by experimental heats of adsorption. However, pore diffusion limitation of the large sulfur molecules (alkylated benzothiophenes) became an important factor for desulfurization of high sulfur jet fuels such that the AgNO3-supported mesoporous sorbents yielded substantially better results than Cu(I)Y, although Cu(I)Y was better for a model fuel that contained only small sulfur molecules. Among all sorbents that have been investigated, the AgNO3/MCM-41 sorbent showed the best desulfurization performance for high sulfur jet fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号