首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

2.
Biodiesel produced from oil-rich feedstocks is known as a green replacement for conventional petroleum diesel. Transesterification is the common method used for biodiesel production. Hence, in this contribution, neural network modeling and least square support vector machine (LSSVM) modeling were used to predict the transesterification of castor oil with methanol to form biodiesel. Also, genetic algorithm was used for the optimization of predictive model. Input and output parameter of predictive models for the prediction of biodiesel production yield and estimation of the efficiency of biodiesel production are catalyst weight (C), methanol-to-oil molar ratio (MOR), time (S), temperature (T), and fatty acid methyl ester (FAME) yield, respectively. Proposed LSSVM modeling predicts biodiesel production yield or FAME yield within ±2% relative deviation with a high value of coefficient of determination (0.99583) and a low value of absolute deviation (1.27) in which the mentioned statistical parameters represent the accuracy and robustness of the model.  相似文献   

3.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

4.
Biodiesel production from crude rice bran oil and properties as fuel   总被引:1,自引:0,他引:1  
This research reported on the successfully production of biodiesel by transesterification of crude rice bran oil (RBO). The process included three-steps. Firstly, the acid value of RBO was reduced to below 1 mg KOH/g by two-steps pretreatment process in the presence of sulfuric acid catalyst. Secondly, the product prepared from the first process was carried out esterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/RBO molar ratio, catalyst amount, reaction temperature and reaction time, was studied at this stage. The content of methyl ester was analyzed by chromatographic analysis. Through orthogonal analysis of parameters in a four-factor and three-level test, the optimum reaction conditions for the transesterification were obtained: methanol/RBO molar ratio 6:1, usage amount of KOH 0.9% w/w, reaction temperature 60 °C and reaction time 60 min. In the third step, methyl ester prepared from the second processing step was refined to become biodiesel. Fuel properties of RBO biodiesel were studied and compared according to ASTM D6751-02 and DIN V51606 standards for biodiesel. Most fuel properties complied with the limits prescribed in the aforementioned standards. The consequent engine test showed a similar power output compared with regular diesel but consumption rate was slightly higher. Emission tests showed a marked decrease in CO, HC and PM, however, with a slight increase in NOX.  相似文献   

5.
In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 24 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 °C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production.  相似文献   

6.
ZSM5 zeolite was impregnated with different KOH loadings (15 wt.%, 25 wt.% and 35 wt.%) to prepare a series of KOH/ZSM5 catalysts. The catalysts were calcined at 500 °C for 3 h and then characterized by N2 adsorption–desorption and X-ray diffraction (XRD) techniques. The catalysts were tested in the transesterification reaction in a batch reactor at 60 °C and under atmospheric pressure. It was found that KOH/ZSM5 with 35 wt.% loading showed the best catalytic performance. The best reaction conditions in the presence of KOH/ZSM5 (35 wt.%) were determined while modifying the catalyst to oil ratio and the reaction time. The highest methyl ester yield (>95%) was obtained for a reaction time of 24 h, a catalyst to oil ratio of 18 wt.%, and a methanol to oil molar ratio of 12:1. The properties of produced biodiesel complied with the ASTM specifications. The catalytic stability test showed that 35KOH/ZSM5 was stable for 3 consecutive runs. Characterization of the spent catalyst indicated that a slight deactivation might be due to the leaching of potassium oxides active sites.  相似文献   

7.
In the present paper state-of-the art and perspectives of ultrasound-assisted (UA) biodiesel production from different oil-bearing materials using acid, base and enzyme catalysts are critically discussed. The ultrasound action in biodiesel production is primarily based on the emulsification of the immiscible liquid reactants by microturbulence generated by radial motion of cavitation bubbles and the physical changes on the surface texture of the solid catalysts generating new active surface area. The importance of ultrasound characteristics and other process variables for the biodiesel yield and the reaction rate is focused on. UA transesterification is compared with other techniques for biodiesel production. Several different developing methods reducing the biodiesel production costs such as the optimization of process factors, the development of the process kinetic models, the use of phase transfer catalysts, the application of the continuous process, the design of novel types of ultrasonic reactors and the in situ ultrasound application in transesterification of oily feedstocks are also discussed.  相似文献   

8.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

9.
The scarcity of fossil fuels, in addition to environmental damage due to fossil fuel use and exploration, promotes research into alternative energy sources such as biofuels. Biodiesel has attracted considerable attention in recent years as an alternative to fossil fuels, since it is renewable, biodegradable and non-toxic. Biodiesel can be obtained from animal fat, vegetable oils including cooking oil. In this work, a method of producing biodiesel from seed cake waste from the edible Jatropha curcas L. plant was developed. Oil extraction using hexane gave the best oil quality. Transesterifications of approximately 95% were obtained by alkali or acid catalysis, and the obtained biodiesel products were successfully corroborated with NMR techniques. Since J. curcas is a non-toxic plant, the remaining de-oiled cake was tested for its nutritional properties. Nutritional analysis showed a content of 43% and 33% of protein and carbohydrate, respectively; suggesting that this waste can be used as an attractive protein and carbohydrate source for fermentation processes and/or for formulations for animal feeding. In conclusion, this work provides evidence that the oil from an edible and non-toxic species of J. curcas is an attractive option for biodiesel production with nutritional applications and negligible wasting.  相似文献   

10.
This work was to study technical and economic feasibilities of converting residual oils recovered from spent bleaching earth generated at soybean oil refineries into useable biodiesel. Experimental results showed that fatty acids in the SBE residual oil were hexadecenoic acid (58.19%), stearic acid (21.49%) and oleic acid (20.32%), which were similar to those of vegetable oils. The methyl ester conversion via a transesterification process gave a yield between 85 and 90%. The biodiesel qualities were in reasonable agreement with both EN 14214 and ASTM D6751 standards. A preliminary financial analysis showed that the production cost of biodiesel from SBE oils was significantly lower than the pre-tax price of fossil diesel or those made of vegetable oils or waste cooking oils. The effects of the crude oil price and the investment on the production cost and the investment return period were also conducted. The result showed that the investment would return faster at higher crude oil price.  相似文献   

11.
The world is confronted with the twin crises of fossil fuel depletion and environmental degradation. The indiscriminate extraction and consumption of fossil fuels have led to a reduction in petroleum reserves. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain region of the world. Therefore, those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude petroleum oil. Hence it is necessary to look for alternative fuels, which can be produced from materials available within the country. Although vegetative oils can be fuel for diesel engines, but their high viscosities, low volatilities and poor cold flow properties have led to the investigation of its various derivatives. Among the different possible sources, fatty acid methyl esters, known as Biodiesel fuel derived from triglycerides (vegetable oil and animal fates) by transesterification with methanol, present the promising alternative substitute to diesel fuels and have received the most attention now a day. The main advantages of using Biodiesel are its renewability, better quality exhaust gas emission, its biodegradability and the organic carbon present in it is photosynthetic in origin. It does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the green house effect. This paper reviews the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.  相似文献   

12.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

13.
The Brazilian National Program for Production and Use of Biodiesel (PNPB in Portuguese) has created a huge demand for biodiesel in Brazil. The PNPB is strongly based on social development through the inclusion of family farmers in projects integrated with biodiesel power plants. Among the various oilseeds, castor bean (Ricinus communis L.) was identified as the ideal one to promote social development in the semi-arid region. However, although promising, the mechanisms of the federal program are still insufficient to promote the effective participation of family farmers. This research shows that companies are facing huge problems in implementing contracts with family farmers. It describes and analyzes the functioning dynamics of this agro-production chain. This paper addresses the identification and the discussion of these obstacles, in order to increase the competitiveness of the biodiesel agribusiness chain, based on castor oil social projects in Brazil.  相似文献   

14.
The present work illustrates the parametric effects on biodiesel production from Hevea brasiliensis oil (HBO) using flamboyant pods derived carbonaceous heterogeneous catalyst. Activated carbon (AC) was prepared maintaining 500 °C for 1 h and steam activated at optimised values of activation time 1.5 h and temperature 350 °C. Carbonaceous support was impregnated with KOH at different AC/KOH ratios. The transesterification process was optimized and significant parameters affecting the biodiesel yield was identified by Taguchi method considering four parameters viz. reaction time, reaction temperature, methanol to oil ratio and catalyst loading. The physicochemical properties of Hevea brasiliensis methyl ester (HBME) were examined experimentally at optimised condition and found to meet the global American standards for testing and materials (ASTM). The optimum condition observed to yield 89.81% of biodiesel were: reaction time 60 min, reaction temperature 55 °C, catalyst loading 3.5wt% and methanol to oil ratio 15:1. Contribution factor revealed that among four parameters considered, catalyst loading and methanol to oil ratio have more prominent effect on biodiesel yield. The cost for preparing carbonaceous catalyst support was estimated and observed to be fairly impressive. Thus, Hevea brasiliensis oil (HBO) could be considered as suitable feedstock and flamboyant pods derived carbon as effective catalyst for production of biodiesel.  相似文献   

15.
The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 °C and 3 °C respectively, which present a problem as regards use in cold temperatures.  相似文献   

16.
The present work aimed at the standardization of transesterification process parameters for the production of methyl ester of filtered neem oil and fuel characterization for engine performance. The effect of process parameters such as molar ratio, preheating temperature, catalyst concentration and reaction time was studied to standardize the transesterification process for estimating the highest recovery of ester with lowest possible viscosity. Based on the observations of the ester recovery and kinematic viscosity, it was found that filtered neem oil at 6:1 M ratio (methanol to oil) preheated at 55 °C temperature and maintaining 60 °C reaction temperature for 60 min in the presence of 2 percent KOH and then allowed to settle for 24 h in order to get lowest kinematic viscosity (2.7 cSt) with ester recovery (83.36%). Different fuel properties of the neem methyl ester and neem oil were also measured. Results show that the methyl ester of neem obtained under the optimum condition is an excellent substitute for fossil fuels.  相似文献   

17.
Free lipase-catalyzed biodiesel has drawn more and more attentions in recent years because of its advantages of lower cost and faster reaction rate. Utilizing free lipase to convert low quality oils such as crude vegetable oils and microbial oils is beneficial to further reduce the cost of biodiesel production. However, these oils typically contain some amount of phospholipids. Phospholipids were found to affect the lipase-catalyzed process and further influence the enzyme's thermal stability in biodiesel production process. In this work, free lipase NS81006-mediated biodiesel production from oils containing phospholipids at varied temperature was investigated systematically. It was found that the presence of phospholipids at high temperature led to a decreased fatty acid methyl esters (FAME) yield and poor reuse stability of the lipase during NS81006-catalyzed biodiesel production process. The higher the temperature was, the greater negative effect was observed. This inhibitory effect was found to be mainly caused by the coexistence of phospholipids and methanol in the system. Based on this finding, a novel two-step enzyme-mediated process was further developed, with which the above-mentioned inhibitory effect was eliminated, and a FAME yield of 95.1% could be obtained with oils containing 10% phospholipids even at high temperature of 55 °C.  相似文献   

18.
In the present work, zeolite based catalyst was prepared from zeolite tuft by impregnation methods. The zeolite tuft was initially treated with hydrochloric acid (16%) and then several KOH/zeolite catalysts were prepared by impregnation in KOH solutions. Various solutions of KOH with different molarities (1–6 M) were used. Further modification for the catalyst was performed by a 2nd step impregnation treatment by heating and stirring the KOH/zeolite to 80 °C for 4 h. The zeolite tuft and the prepared catalysts were characterized by several analytical techniques in order to explore their physicochemical properties. These tests include: X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), Zero point of Charge (PHzpc), Fourier Transform Infrared (FT-IR), Energy-dispersive X-Ray analysis (EDX) and X-Ray Diffraction (XRD). The catalysts were then used for transesterification of waste sunflower vegetable oil in order to produce biodiesel. Among the different catalysts prepared, the 1–4M KOH/TZT catalyst provided the maximum biodiesel yield of 96.7% at 50 °C reaction temperature, methanol to oil molar ratio of 11.5:1, agitation speed of 800 rpm, 335 μm catalyst particle size and 2 h reaction time. The physicochemical properties of the produced biodiesel comply with the EN and ASTM standard specifications.  相似文献   

19.
Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality.  相似文献   

20.
In the present work, a new and pioneering hybrid technology, called hydrodynamic-cavitation reactor, was established and investigated to proof the feasibility for the biodiesel production from Chlorella minutissima microalgae. The process parameters such as inlet pressure (A), molar ratio (B), catalyst concentration (C), and reaction time (D) have been investigated over the biodiesel yield from Chlorella minutissima microalgae. Box–?Behnken design was applied to develop the second- order polynomial model. The error between experimental values and model prediction was found to be less than 10%. Interactive effects of process variables on the biodiesel yield from Chlorella minutissima microalgae was studied using contour graphs. Inlet pressure of 4 bar, molar ratio of 1: 30, catalyst concentration of 1.3%, and reaction time of 40 min produced 99% of biodiesel yield. Further, a kinetic model has also been developed and considers the transesterification reaction to be a second-order reversible, first order with respect to each of the reactants and products. Estimated values of kinetic constants are k1 = 0.00014 L min/mol and k2 = 0.035 L min/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号