首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper reports the investigation results of wind power application in buildings. It is found that the concentration effect of buildings and the heights of buildings could enhance wind power utilization by increasing the wind speed by 1.5–2× and wind power density by 3–8× under the given simulation conditions. The wind aerodynamics and wind flows over the buildings are investigated based on local meteorological data and local high-rise building characteristics. This paper concludes that wind power utilization in high-rise buildings in Hong Kong is feasible theoretically, and some effective enhancement methods are proposed based on the simulation results, such as making full use of the heights of buildings and the concentration effect of buildings, and choosing optimal shape of building roof. However, to receive the highest potential wind energy resource and avoid turbulent areas, the tool of Computational Fluid Dynamics (CFD) has to be used to model the annual wind flows over buildings to help analyze, locate, and design wind turbines in and around buildings.  相似文献   

2.
The installation of small and medium-size wind turbines on the rooftops of high buildings has been often suggested by architects and project developers as a potential solution for achieving sustainable energy in building design. In such locations, however, because of the presence of buildings and other adjacent obstructions, wind is normally turbulent, unstable and weak, in terms of direction and speed. The use of wind turbines in the built environment poses challenges to overcome, including energy yield reduction due to lower mean wind speeds in urban areas, and environmental impacts because of their close vicinity to people and property.There is a need to understand the inflow wind conditions for a small wind turbine in the built-environment. A resource assessment of the potential wind turbine site in the built environment can determine the wind characteristics including zones of wind acceleration, recirculation, blocking and channelling. This knowledge is crucial for input into the design process of a small wind turbine to accurately predict blade fatigue loads and ensure that it operates safely, and performs optimally in the environment.Computational Fluid Dynamics (CFD) is a useful method to model wind flows in order to perform a resource assessment for the application of small wind turbines in a manner that requires less time and investment than a measurement campaign. This paper presents the results of research using a CFD code to model wind flows over the roof of a building and assesses the possibility of combining a CFD package with wind atlas software to form a wind energy resource assessment tool for the application of small wind turbines on the roof of a building. Experimentation with the model shows that the results are particularly sensitive to building height and shape, roof shape, wind direction, and turbine installation height and location. The results will be used to help develop a recommended practice of wind resource assessment in the built environment, in an international collaborative effort via the International Energy Agency Task 27.  相似文献   

3.
Building-integrated micro-wind turbines are promising low-cost renewable energy devices. However, the take-up of micro-wind turbines in high density suburban environments is still very limited due to issues such as: a) low wind speeds; b) high turbulence intensity; and c) the perception of potentially high levels of aerodynamic noise generated by the turbines. The wind flow field above the roof of buildings in this environment is different to that over flat terrain or around isolated buildings. The effect of the local suburban topology on the wind speed and turbulence intensity fields in a given locality is therefore an important determinant of the optimal location of micro-wind turbines. This paper presents a numerical study of above roof wind flow characteristics in three suburban landscapes characterized by houses with different roof profiles, namely: pitched roofs, pyramidal roofs and flat roofs. Computational Fluid Dynamic (CFD) technique has been used to simulate the wind flow in such environments and to find the optimum turbine mounting locations. Results show how the wind flow characteristics are strongly dependent on the profile of the roofs. It is found that turbines mounted on flat roofs are likely to yield higher and more consistent power for the same turbine hub elevation than the other roof profiles.  相似文献   

4.
叶片是风力机最重要的组成部分,在不同的风能资源情况下,翼型的选择对垂直轴风力机气动特性有着重要的影响。文章分别以NACA0018翼型(对称翼型)和NACA4418翼型(非对称翼型)建立3叶片H型垂直轴风力机二维仿真模型。应用数值模拟的研究方法,从功率系数、单个叶片切向力系数等方面比较两种风力机模型在不同叶尖速比下的气动特性,并采用风洞实验数据验证了流场计算的准确性。CFD计算结果表明:在低叶尖速比下,NACA4418翼型风力机气动特性优于NACA0018翼型风力机,适用于低风速区域;在高叶尖速比下,NACA0018翼型风力机气动特性较好,适用于高风速地区。而且在高叶尖速比时,NACA0018翼型在上风区时,切向力系数平均值要高于NACA4418翼型,在下风区时,NACA418翼型切向力系数平均值高。该研究可为小型垂直轴风力机翼型的选择提供参考。  相似文献   

5.
针对城市建筑环境内的风能应用问题,利用CFD方法对4种不同建筑外形的高层建筑物顶面风场湍流特征进行研究,开展建筑外形对风向变化的敏感性分析,并分析4种建筑物顶面风速、湍流强度随高度的变化规律,确定4种建筑外形的建筑顶面风力机的合理安装位置和高度,结果表明:具有圆润曲线外形的2类建筑更利于风力机的安装,风力机的安装高度可更低;建筑物的长轴和短轴越接近,顶面越有利于风力机的安装;4种建筑外形的建筑顶面安装风力机时仅考虑U/U0≥1的有利安装高度Hu即可保证风力机的有效输出功率和运行安全;无盛行风向情况下,4种建筑物的中心区域更有利于风力机安装,风力机的安装高度最低,圆柱体、椭圆体、正方体及长方体建筑物顶面中心区域风力机最低安装高度分别为1.05H、1.09H、1.11H及1.14H。  相似文献   

6.
Wind turbines operate under various wind conditions in which turbulence virtually always exists. Therefore, unsteady wind turbine simulation methods to estimate wind loading in turbulent inflow conditions are very important for developing optimally designed wind turbines. Several methods have been developed for this purpose and are usually based on the blade element momentum theory (BEMT), which is used for calculation of the wind loading on turbine blades. The local shear flow effect induced by turbulence, however, is not explicitly considered in the popular BEMT-based simulations. Extreme situations can occur in a large-scale wind farm where the inflow field of a wind turbine may contain strong tip vortices generated from upstream turbines. In this study, the effects of idealized local shear flows around a two-dimensional airfoil, S809, on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. The shear rate in a flow causes some changes in the lift coefficient depending on its sign and magnitude, while the angle of attack does not have a distinguishable influence. The chord length and reference inflow also cause proportional and inversely proportional changes in the lift coefficient, respectively. Based on these observations, we adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a lift correction model, which is easily applicable to the traditional load analysis procedure based on the BEMT.  相似文献   

7.
Micro‐generation is being widely promoted as a way for householders in the UK and elsewhere to take part in ‘the Green Revolution’. Building‐integrated wind turbines (BIWTs) provide a way to do this, enabling people to reduce their contribution to the problems of both climate change and decreasing fossil fuel availability. Although energy yields from BIWTs for many householders have been shown to be low, there are still situations where such turbines can make a useful contribution to electricity generation, e.g. in windier areas and for isolated detached buildings. The standards for the installation of BIWTs are still being developed including those for the safe mounting of turbines on domestic buildings. This paper investigates the current trend for mounting small wind turbines on the walls of domestic premises and compares this with an approach which uses roof timbers. It identifies the main characteristics of building construction which affect the integrity of such installations. European and British standards have been used to calculate wind and gravitational loads. Finite element models are used to derive working stresses and, hence, some basic principles of good design. The likely costs of wall and roof mounting are then compared. Installation and health and safety issues are also examined briefly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
针对建筑物群内风能应用问题,采用CFD方法,对建筑密度分别为26%、20%、18%、16%、14%的5种建筑物群周围风速和湍流强度特征开展研究,分析建筑密度对建筑物群内风力机合理安装位置的影响方式。结果表明:在低于1.5H高度范围内,建筑物群的建筑密度越大,同一安装高度上适合于安装风力机的区域就越大,即越有利于建筑物群内风能的应用;在高度高于1.5H后,建筑密度对建筑物群内风力机安装位置的影响消失;无论建筑密度大小,在低于1.2H的高度范围内,建筑物群内不适合安装风力机;在高度高于1.45H后,可优先考虑将风力机安装于建筑物群内中间一排建筑物顶面,在建筑物顶面可优先将风力机安装于拐角位置;5种建筑密度的建筑物群内只考虑风速要求即可确定风力机的合理安装位置。  相似文献   

9.
The stress and deflection of straight and helical-bladed vertical axis turbines was investigated using hydrodynamic and structural analysis models. Using Double Multiple Streamtube (DMS) and Computational Fluid Dynamics (CFD) models, the hydrodynamic forces and pressures on the turbines were modelled for three rotational rates from startup to over speed conditions. The results from these hydrodynamic models were then used to determine stress and total deflection levels using beam theory and Finite Element Analysis (FEA) methods. Maximum stress and deflection levels were found when the blades were in the furthest upstream region, with the highest stresses found at the blade-strut joints for the turbines studied. The helical turbine exhibited on average 13% lower maximum stress levels than the straight-bladed turbine, due to the helical distribution of the blades around the rotational axis. All simulation models offered similar accuracy when predicting maximum blade stress and deflection levels; however for detailed analysis of the blade-strut joints the more computationally demanding CFD-FEA models were required. Straight-bladed, rather than helical turbines, are suggested to be more suited for tidal installations, as for the same turbine frontal area they produce higher power output with only 13% greater structural stress loading.  相似文献   

10.
The wind has been regarded as an important criterion in designing building environments since the early days of human settlement. In hot, arid regions of Iran building is designed such as to have adequate protection against the wind storms and also they had provided summer time air conditioning by means of passive cooling. Most of such buildings are domed roof structures. In order to observe wind environment over such structures, simple models of these vaulted roof buildings are made and tested in a two dimensional low speed wind tunnel for low velocity smoke flows.Flow pattern over and around the models are visualized and photographed. From the observations, several features such as flow separation, turbulence, wind shadow area and flow circulation have been identified for different building configurations.  相似文献   

11.
One of attracting concepts has been the use of Magnus effect to produce lift from rotating cylinders in various engineering applications. With emerging innovative Magnus type wind turbine technology, it is important to determine power performance and characteristics of such generators as correctly as possible. As stressed by Seifert, there is lack of theories in design and modelling of using Magnus force in engineering which is particularly noticed for the horizontal axis Magnus type wind turbines. In this study, the importance of research carried out for determining lift and drag forces of rotating circular cylinders is highlighted and reviewed. Then, the theoretical methods used in designing commercial aerofoil type wind turbines are extended to apply on the Magnus types. New formulation is presented for potential flow around the Magnus blades. The blade element momentum (BEM) theory is formulated for the Magnus wind turbines. A cubic function for angular induction factor is found from the BEM analysis which is strongly dependant on the drag to lift ratio. It is also observed that the relative wind incidence angle and the local power coefficient of the Magnus cylinder are independent functions of spin ratio.  相似文献   

12.
Interest in the exploitation of offshore wind resources using floating wind turbines has increased. Commercial development of floating horizontal axis wind turbines (FHAWTs) is emerging because of their commercial success in onshore and near‐shore areas. Floating vertical axis wind turbines (FVAWTs) are also promising because of their low installation and maintenance costs. Therefore, a comparative study on the dynamic responses of FHAWTs and FVAWTs is of great interest. In the present study, a FHAWT employing the 5MW wind turbine developed by the National Renewable Energy Laboratory (NREL) and a FVAWT employing a Darrieus rotor, both mounted on the OC3 spar buoy, were considered. An improved control strategy was introduced for FVAWTs to achieve an approximately constant mean generator power for the above rated wind speeds. Fully coupled time domain simulations were carried out using identical, directional aligned and correlated wind and wave conditions. Because of different aerodynamic load characteristics and control strategies, the FVAWT results in larger mean tower base bending moments and mooring line tensions above the rated wind speed. Because significant two‐per‐revolution aerodynamic loads act on the FVAWT, the generator power, tower base bending moments and delta line tensions show prominent two‐per‐revolution variation. Consequently, the FVAWT suffers from severe fatigue damage at the tower bottom. However, the dynamic performance of the FVAWT could be improved by increasing the number of blades, using helical blades or employing a more advanced control strategy, which requires additional research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A numerical study of both a horizontal axis wind turbine (HAWT) and a vertical axis wind turbine (VAWT) with similar size and power rating is presented. These large scale turbines have been tested when operating stand‐alone at their optimal tip speed ratio (TSR) within a neutrally stratified atmospheric boundary layer (ABL). The impact of three different surface roughness lengths on the turbine performance is studied for the both turbines. The turbines performance, the response to the variation in the surface roughness of terrain, and the most relevant phenomena involved on the resulting wake were investigated. The main goal was to evaluate the differences and similarities of these two different types of turbine when they operate under the same atmospheric flow conditions. An actuator line model (ALM) was used together with the large eddy simulation (LES) approach for predicting wake effects, and it was implemented using the open‐source computational fluid dynamics (CFD) library OpenFOAM to solve the governing equations and to compute the resulting flow fields. This model was first validated using wind tunnel measurements of power coefficients and wake of interacting HAWTs, and then employed to study the wake structure of both full scale turbines. A preliminary study test comparing the forces on a VAWT blades against measurements was also investigated. These obtained results showed a better performance and shorter wake (faster recovery) for an HAWT compared with a VAWT for the same atmospheric conditions.  相似文献   

14.
垂直轴风力机概述及发展优势剖析   总被引:1,自引:1,他引:0  
莫晓聃  李涛 《节能技术》2010,28(5):450-453
本文简要介绍了垂直轴风力机的各种类型及其原理特点,然后对垂直轴风力机与水平轴风力机在结构设计、空气动力学性能、环境的影响等多方面进行了比较,体现了垂直轴风力机的独有优势,并得出垂直轴风力机发展前景广阔的结论。  相似文献   

15.
W. Krewitt  J. Nitsch 《Renewable Energy》2003,28(10):1645-1655
In spite of the well-acknowledged environmental benefits of electricity generation from wind energy, there is increasing concern about impacts from wind turbines on local ecosystems and on the natural scenery. A GIS-based approach is developed to analyse the effect of different nature conservation criteria on the wind energy potential in quantitative terms. Results for two case study regions in Germany, representing a coastal area with quite good wind conditions and an inland region with limited wind resources, illustrate to which extent the ban of wind turbines in, for example, landscape conservation areas, special bird protection areas, or areas with high visual sensitivity reduces the potential for electricity generation from wind energy. We conclude that even under strict nature conservation constraints there is still a large potential for on-shore wind energy use that can be used to establish a sustainable electricity supply in Germany.  相似文献   

16.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

17.
[目的]世界范围内已经建成的海上风场大部分位于浅水区域(水深<30 m),主要以单桩等固定式基础为主。随着风电技术的不断成熟,海上风电逐渐走向机组大型化趋势,而单桩海上风机的基础直径也将随着机组大型化而增加。其所受到的环境载荷和土质条件要求也愈加严苛,对于大直径单桩式海上风机的桩土相互作用的研究成为海上风电技术的关键技术问题之一。[方法]拟对浅水水域10 MW大型海上风机,研究不同桩土模型对大型单桩海上风机的动力响应的影响。[结果]结果表明,宏单元法考虑了非线性的刚度与塑性,在特征频率附近的功率谱密度总和大,对比其他传统桩土模型时有很大的优势。[结论]所做研究对风机的整体安全运行具有深远的理论价值与工程应用前景。  相似文献   

18.
为解决复杂地形边界层风场模拟的边界条件问题,结合中尺度数值天气预报(NWP)和小尺度计算流体动力学(CFD)技术,提出一种基于NWP/CFD嵌套的降尺度风场模拟方法。该方法依据NWP低分辨率输出结果,建立目标区域来流边界数据库,并结合反距加权插值获得CFD边界精细格点信息。以沿海地区2处复杂地形为对象,重现目标区域内的风场日变化。参考经验风剖面分布形式,验证插值算法在中小尺度耦合界面数据传递的适用性。然后基于模拟域内实测点数据及误差统计指标,评估风场模拟效果。结果表明,所提降尺度风场模拟方法能有效反映微地形、微气象对风力机尺度大气运动影响。  相似文献   

19.
20.
All countries attach great importance to renewable energy investments with concern that future fossil-fueled energy resources could be exhausted. Thus, a very large renewable energy production potential may be predicted in not a very distant future. This study is about optimal energy production from wind and hydroelectric power plants at a small scale settlement center. A water resources system with multiple reservoirs in which wind power plants are located around the basin is described in this study. The system has three scenarios, in which wind and hydroelectric power plants are integrated, separated and no wind turbines. In the integrated scenario, by the energy generated in the wind power plants, the released flows from the reservoirs are sent to the reservoirs as a use again. In models of every scenario, optimal operational models for long-term planning are established on the system. The technique of dynamic programming with successive approximations is used in these models. The models are applied to a water resources system with multiple reservoirs presented successively on the main line of the Ceyhan River in the Ceyhan Basin. The results obtained here are evaluated in terms of three scenarios developed for energy production. As a result, it has been seen that the systems of the integrated and separated scenario are similar to energy productions and system without wind turbines produces more little energy production to other scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号