首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
The siloxane-functioned Cu(II) complex derived from 3-aminopropyltrimethoxysilane, terephthaldehyde and 2-aminophenol was anchored on hexagonal mesoporous silica MCM-41. The MCM-41 and its Schiff base MCM-41 complex was characterized by FTIR, small-angle X-ray diffraction, SEM-EDX, N2 adsorption and desorption analysis and TGA. The synthesized Cu-Schiff base MCM-41 catalyst has been successfully applied as a catalyst for Ullmann-type coupling reaction of the aryl halides with aryl halides, phenols, amines and N-heterocyclic amines. In the coupling reaction the yields of the products were good and the catalyst was recovered by simple filtration method and can be reused.  相似文献   

2.
Very high loadings of C60 and C60 anions in MCM-41 mesoporous materials have been achieved by modifying the channel surface with amino-functional group. Detailed physical properties of these mesoporous materials containing C60 were characterized by EPR, NMR, XRD, FTIR and UV–vis spectroscopic techniques. The surface area and pore size of mesoporous materials were further determined by N2 adsorption–desorption isotherms. The mesopores of MCM-41 show sieving behavior in excluding the larger sized C120O while absorbing the smaller C60 as indicated in the EPR studies.  相似文献   

3.
MCM-41 silica spheres were prepared via the pseudomorphic route. Subsequent surface modification of the mesoporous silica spheres was achieved by two silylating agents, n-octadecyltrihydridosilane and n-octadecyltrimethoxysilane, which provided different surface coverages. The MCM-41 pore structure, surface properties and morphological features were examined by small angle X-ray scattering, nitrogen adsorption–desorption and scanning electron microscopy. The investigations revealed an influence of the silica source on the mesoporous structure, as reflected by a higher long-range order for the pores in MCM-41 spheres prepared from Kromasil silica. Surface modification is accompanied by a reduction of the surface area, pore diameter and pore volume of the MCM-41 materials, whereas the spherical morphology of the spheres is retained. The degree of grafting and cross-linking of the alkylsilanes was determined by 29Si NMR spectroscopy. A higher degree of alkyl chain grafting was observed for the solvent extracted MCM-41 spheres and for samples prepared via surface polymerization.FTIR and 13C NMR spectroscopies were employed to study the conformational behaviour and mobility of the grafted octadecyl chains. The conformational order was found to strongly depend on the history of the MCM-41 supports (calcination, solvent extraction) and on the actual surface modification procedure. In general, a lower conformational order was observed for the present mesoporous alkyl modified silica spheres as compared to conventional C18 modified silica gels which is mainly attributed to the lower surface coverage.  相似文献   

4.
By using the bifunctional ligand, 8-hydroxyquinoline-functionalized organosilane (Q-Si), the new mesoporous material Q–MCM-41 covalently bonded with 8-hydroxyquinoline was synthesized. Through the ligand exchange reaction, the new near-infrared (NIR) luminescent mesoporous LnQ3–MCM-41 (Ln = Er, Nd, Yb) materials were prepared by linking the lanthanide quinolinate complexes to the ordered mesoporous Q–MCM-41 material. The LnQ3–MCM-41 materials were characterized by powder X-ray diffraction and N2 adsorption/desorption, and they all show the characteristic mesoporous structure of MCM-41 with highly uniform pore size distributions. Fluorescence spectra of these LnQ3–MCM-41 materials were recorded and the corresponding luminescence decay analyses were measured. After ligand-mediated excitation, all the emission spectra of the LnQ3–MCM-41 materials show the characteristic NIR-luminescence of the corresponding lanthanide ions via the intramolecular energy transfer from the ligands to the lanthanide ions. The good luminescent performances enable these NIR-luminescent mesoporous materials to have potential applications in optical amplification (operating at 1.3 or 1.5 μm) and laser systems, etc.  相似文献   

5.
Dimerization of 1-butene in liquid phase was studied over H-Beta zeolite catalyst and MCM-41 mesoporous material in an autoclave at temperature of 473 K and at pressure of 20 bar using n-heptane as a solvent. Liquid phase product analysis was carried out using GC-MS and a pattern recognition technique, Soft Independent Modeling of Class Analogy (SIMCA). Acidity of the catalysts was determined by FTIR, phase purity using X-ray powder diffraction, surface area by nitrogen adsorption and morphology of zeolite and mesoporous material crystals using scanning electron microscope. Influence of acidity, pore size and structure of H-Beta zeolite and H-MCM-41 mesoporous material on the conversion of n-butene and selectivity to C8 hydrocarbon such as 2,2,4-trimethylpentene, dimethylpentene and 2-methylpentene was investigated. H-MCM-41 mesoporous material exhibited higher selectivities to C8 hydrocarbons than H-Beta zeolite catalyst. However, conversion of n-butene was higher over H-Beta zeolite catalyst than H-MCM-41 mesoporous material.  相似文献   

6.
Ru(II)(salen)(PPh3)2 immobilized on MCM-41 and SBA-15 modified with aminopropyl groups as linkers has been synthesized and characterized by elemental analysis, TEM, FTIR, BET, and TGA. Elemental analysis shows that the grafted samples contain 0.7–0.8 wt.% Ru. The retaining of long range ordering of the mesoporous MCM-41 and SBA-15 supporting materials after grafting is evident from TEM and N2 adsorption/desorption measurements. FTIR and TGA spectra show the formation of metal salen complexes with the amino groups acting as connectors to the SiO2 surface. Both grafted materials were successfully applied as catalysts for the olefination of various aldehydes with very good yields and high E-selectivity. The catalyst materials are recyclable for several catalytic runs.  相似文献   

7.
以3-氨丙基三乙氧基硅烷(3-aminopropyltriethoxysilane,APS)为偶联剂,用共缩聚的方法合成了氨基官能化的MCM-41介孔分子筛(amino-functionalized mesoporous MCM-41,AP-MCM-41),在分子筛孔道和表面共价偶联Ag(Ⅰ)Schiff碱配合物。采用X射线衍射、Fourier红外光谱、紫外-可见光谱、氮气吸附/脱附、元素分析和透射电子显微镜对所制备的样品进行了表征。结果表明:Ag(Ⅰ)Schiff碱配合物被成功嫁接到了分子筛的孔道和表面上,而且嫁接后的MCM-41仍然具有较好的孔径分布和有序结构,比表面积达到712.59m2/g,最可几孔径为3.41nm,具有典型的介孔材料特征。透射电子显微镜观察显示具有明显的孔道结构,并且较为规整。紫外-可见光谱显示,金属配位后,样品的相应的归属峰发生了明显的漂移,说明Ag(Ⅰ)Schiff碱配合物已嫁接到MCM-41表面并形成牢固的结构。  相似文献   

8.
In this study, a pH-controlled core–shell structured site-specific magnetic nanocomposite for drug delivery was reported. Superparamagnetic Fe3O4 nanoparticles were selected to build its core for magnetic guiding purpose and mesoporous silica molecular sieve MCM-41 was chosen to construct its outer shell. The MCM-41 outer shell has highly ordered hexagonal tunnels therefore would offered enough cargo space for drug molecules. An organic ligand N1-(5H-cyclopenta[1,2-b:5,4-b′]dipyridin-5-ylidene)benzene-1,4-diamine (denoted as Dafo-Ph-NH2) was linked to the molecular sieve outer shell. There are two nitrogen atoms at the end of the ligand which are able to donate their lone pair electrons. Acidic drug molecules therefore can be bound to the ligand via weak acid–base reaction. Those drug molecules can be release in low pH solution since the H+ in the solution will compete with the ligand. The final composite was analyzed by electron microscope images, XRD, IR spectra, thermogravimetry and N2 adsorption/desorption. Its bio-compatibility was evaluated by MTT using L929 fibroblast cell line. Our Dafo-MCM-41@Fe3O4 composite shows pH-controlled and site-specific smart release properties for aspirin in vitro.  相似文献   

9.
In this study, MCM-41 material was synthesised and the mesoporous structure was confirmed by powder XRD patterns. Organic group 3-chloropropyl was anchored on the surface of MCM-41(∞) by reaction of 3-chloropropyltrimethoxysilane with terminal silanol groups on the surface of MCM-41(∞) material. The modified material MCM-41(∞)-Cl still kept its mesoporous structure even after the material was calcined again at 550°C for 4 h and the organic groups were removed. Prepared by solid state ion-exchange under flowing nitrogen, CuCl/MCM-41 catalyst had 100% selectivity of dimethyl carbonate based on methanol and 5–10 wt.% conversion of methanol at 130°C. With the decreasing mole ratio of Si/Al of MCM-41 material, e.g. increasing the aluminium content in the material, the catalytic activity increased because more CuI was loaded on the material. When the reaction temperature increased, the dimethyl carbonate selectivity decreased and three by-products: dimethyl ether, methyl formate, dimethoxymethane were formed at high temperature. Finally increasing the oxygen partial pressure in the feed gases resulted in more dimethyl carbonate formed.  相似文献   

10.
This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.  相似文献   

11.
Utilization of carbon dioxide (CO2) has become an important global issue due to significant and continuous rise in atmospheric CO2 concentrations. To find a potential solution, two types of mesoporous materials, MCM-41 and MCM-48, were synthesized and impregnated with 30, 50 and 70 wt% of polyethyleneimine (PEI) in methanol to evaluate the performance of the materials in terms of CO2 adsorption. The materials were characterized by XRD, TGA, FTIR, TEM, SEM, N2-physisorption and BET techniques. All the PEI-loaded materials exhibited substantially higher reversible CO2 adsorption-desorption behaviors with >99% recovery. The above study proved that MCM-48 is a better material as compared to MCM-41 for loading of PEI. The material with 50 wt% loading of PEI on MCM-48, showed maximum adsorption of 248 mg/g-PEI at 80 °C which is about 30 times higher than that of MCM-48 and about 2.3 times that of pure PEI.  相似文献   

12.
Two β-diketones 4,4,4-trifluoro-1-2-thenoyl-1,3-butanedione (Htta) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (Htfnb), which contain trifluoroalkyl chain, were selected as the main sensitizer for synthesizing Tm(L)3phen (L = tta, tfnb) complexes. The two near-infrared (NIR) luminescent thulium complexes have been covalently bonded to the ordered mesoporous material MCM-41 via a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) [The resultant mesoporous materials are denoted as Tm(L)3phen–MCM-41 (L = tta, tfnb)]. The Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials were characterized by small-angle X-ray diffraction (XRD) and N2 adsorption/desorption, and they show characteristic mesoporous structure of MCM-41. Luminescence spectra of the Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials were recorded and the corresponding luminescence decay curves were obtained. After ligand-mediated excitation, the emission spectra of the Tm(L)3phen–MCM-41 (L = tta, tfnb) mesoporous materials show the characteristic NIR-luminescence of the Tm3+ ion. The full width at half maximum (fwhm) of the 1474-nm emission band are 96 and 100 nm for Tm(tta)3phen–MCM-41 and Tm(tfnb)3phen–MCM-41, respectively. The good luminescent performances enable these NIR-luminescent mesoporous materials to have potential applications in optical amplification [broadening amplification band from C band (1530–1560 nm) to S+ band (1450–1500 nm)]. Furthermore, the comparison of the luminescence behavior for Tm(tta)3phen–MCM-41 and Tm(tfnb)3phen–MCM-41 mesoporous materials was investigated. It shows that Tm(tfnb)3phen–MCM-41 is somewhat superior to Tm(tta)3phen–MCM-41 as optical amplifier.  相似文献   

13.
The adsorption of trichloroethylene (TCE), tetrachloroethylene (PCE), and carbon tetrachloride was studied over our synthesized mesoporous material, MCM-41, from rice husk silica source, abbreviated as RH-MCM-41. More than 99% silica for RH-MCM-41 synthesis was extracted from rice husk under refluxing in HBr solution and then calcined at 873 K for 4 hours. RH-MCM-41 possessed surface area around 750-1,100 m2/g with a uniform pore size with an average diameter of 2.95 nm, narrow range of pore distribution and somewhat hexagonal structure, similar to properties of parent MCM-41. The adsorption of CC14 to RH-MCM-41 was stronger than that of TCE and PCE. The adsorption capacity of RH-MCM-41 for CVOCs (chlorinated volatile organic compounds) was higher than commercial mordenite and activated carbons.  相似文献   

14.
A series of acid?Cbase bifunctionalized mesoporous silicas have been successfully synthesized by means of a convenient solvent-free approach. Through grinding the precursors, aluminium and magnesium nitrates, with the as-prepared MCM-41, and then the generation of acid?Cbase sites and removal of host template were simultaneously completed in the subsequent calcination procedure. The resultant modified mesoporous silicas MgO?CAl2O3?CMCM-41 were characterized with X-ray diffraction, high-resolution transmission electron microscopes, N2 adsorption, FT-IR spectra, 29Si and 27Al MAS NMR, NH3? and CO2? temperature programmed desorption. The results indicate that the products exhibit excellent acid?Cbase properties with well mesoporous structure, and the guests were well dispersed in the channel of MCM-41, which make it exhibit high activity for the synthesis of EMC.  相似文献   

15.
The synthesis of MCM-41 mesoporous compounds with Si/Al ratios as low as 2 without observing the presence of octahedral Al in27AlMAS NMR is reported. FTIR spectra of chemisorbed pyridine indicated that MCM-41 materials in their protonated form exhibit both Brønsted and Lewis acid sites.  相似文献   

16.
A Beta/MCM-41 composite has been synthesized with a new method by using well-crystallized zeolite Beta as silica and aluminum source. The prepared composite was characterized by XRD, FTIR, N2 adsorption/desorption at 77 K, FE-SEM, DTG, 29Si MAS NMR spectral techniques. It was shown that the composite consisted of a highly ordered mesoporous MCM-41 phase and a zeolite Beta phase. Its hexagonal mesoporous structure was still retained after statically treated for 120 h in boiling water. In contrast, the structure of generally synthesized Al-MCM-41 nearly completely collapsed. This might be attributed to the assembly of the dissolved fragments such as the first and/or secondary structural units of zeolite Beta into the mesoporous structure around surfactant micelles. This is supported by the catalytic result that the prepared composite showed higher activity and selectivity for medium fraction in hydrocracking of Daqing vacuum residue than the parent zeolite Beta, the Al-MCM-41 as well as the mechanical mixture of these two materials.  相似文献   

17.
Vanadyl Schiff base complexes covalently attached on the surface of MCM-41 have been synthesized by anchoring Schiff base and subsequent reaction with VO(acac)2. XRD, nitrogen adsorption and desorption, UV-visible spectroscopy and FT-IR show that vanadyl Schiff base complexes were successfully anchored on the surface of MCM-41 and the mesopore ordering decreased after the anchoring. The so-prepared heterogeneous catalysts have showed high activity for sulfide oxidation.  相似文献   

18.
Nanostructured nitrogen-containing carbon (CNs) were prepared by nanocasting techniques using MCM-41, MCM-22, and FAU molecular sieves. The surface and morphological features of CN were investigated by XRD, SEM, Raman spectroscopy, FTIR, XPS, and N2 adsorption isotherms. The catalytic activity in a fine chemistry reaction was also evaluated. The amine-functionalized carbon materials studied are potentially of great importance because of their textural features and high catalytic performance towards Knoevenaguel condensation. In addition, variation of the structure of the molecular sieve material from FAU to MCM-41 led to an increase in the conversion from 23 to 80%. This may be correlated to the basic active sites upon incorporation of nitrogen and also an organized CN that provides active, selective, and stable catalysts to the target reaction. The re-use of the MCM-41-CN does not affect the selectivity of the desired product.  相似文献   

19.
以气相氧化硅为硅源,十六烷基三甲基溴化铵(cetyl trimethyl ammonium bromide,CTAB)为模板剂,分别在碱性[氢氧化钠(NaOH),四乙基氢氧化铵,tetraethyl ammonium hydroxide,(C2Hs)4NOH(TEAOH)]和酸性介质条件[盐酸(HCl)]T水热合成了MCM-41有序介孔材料MCM-41-N,MCM-41-T和MCM-41-H.用X射线衍射、氮气吸附-脱附等手段对比分析了合成的3种MCM-41介孔材料的物相、比表面积、孔径、孔体积等,发现酸性介质中合成的介孔材料的孔径最大.在此基础上,利用MCM-41介孔材料对比研究了处理含镉离子(Cd2 )废水的效果和机理,确定了不同介孔材料用量、不同初始pH值条件下MCM-41介孔材料对水中Cd2 的吸附率和吸附量.结果表明:介孔材料用量相同时,溶液pH值的增大有利于提高3种MCM-41介孔材料对水中Cd2 的处理效果.在pH值从7.0到8.0的过程中,其吸附率有1个突变,MCM-41-T的Cd2 吸附率从35.65%提高到62.15%;MCM-41-N的从38.80%提高到69.40%;MCM-41-H的从50.22%提高到73.47%.孔径最大的MCM-41-H对Cd2 的吸附效果最佳,最大吸附率为89.56%,最大吸附容量为8.57 mg/g.吸附溶液pH值的大小和介孔材料的孔径尺寸是决定吸附量大小的关键因素,因此,重点应通过优化合成工艺提高介孔材料的孔径.  相似文献   

20.
The liquid-phase stereoselective hydrogenation of phenyl alkyl acetylenics at 298 K and atmospheric pressure on Pd-supported catalysts has been studied. The catalysts were prepared by impregnation of Pd(acac)2 precursor (1 wt% of Pd) on different siliceous substrates such as amorphous SiO2, mesoporous MCM-41 and silylated MCM-41. The poisoning effect of lead incorporation on the supported palladium was also studied. All the catalysts displayed high selectivity to cis-alkene isomer, with Pd/MCM-41 being the most active catalyst. Deliberately adding lead to the base, palladium catalysts underwent changes in the selectivity to cis-alkene isomer and a significant drop in the activity. All the solids were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, TPR, H2 and CO chemisorption, XRD, XPS, and TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号