首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study the savings of CO2 emissions due to the use of ground source heat pump (GSHP) systems was investigated in comparison to conventional heating systems. Based on a subsidy program for GSHP systems in southwest Germany, the regional, average, and total CO2 savings of 1105 installed GSHP systems were determined on a regional scale. The emitted CO2 per kWh of heating demand for the studied scenario resulted in 149 g CO2/kWh for GSHP using the German electricity mix and 65 g CO2/kWh using the regional electricity mix, which results in CO2 savings of 35% or 72%, respectively. Similar CO2 avoidances of GSHP systems were found in American and European studies ranging between 15% and 77% strongly depending on the supplied energy for the heat pumps and the efficiency of installation. The resulting CO2 savings for one installed GSHP unit in the present study therefore range between 1800 and 4000 kg per year. Nevertheless, the minimum average total annual CO2 savings of all installed GSHP systems due to the subsidy program amounted to 2000 tons per year. The maximum regional avoided additional CO2 emissions are primarily associated with the affluent suburbs of the most densely populated area in the region. In 2006 the total contribution of CO2 savings due to GSHP systems in Germany was only about 3.4% of the total renewable energies. However, continuously rising numbers of installed GSHP units and the increasing use of renewable electricity demonstrate that there is a fine opportunity to substantially avoid additional CO2 emissions associated with the provision of heating (and cooling) of buildings and other facilities.  相似文献   

2.
In the pursuit of energy savings and emission reductions, solar energy heating systems have been promoted in China. However, there still exist many barriers to the operation of solar heating systems, in combination with other systems, under realistic conditions. In order to investigate this further, an integrated space heating system including passive sunspace, active solar water heating, and air-source heat pump (ASHP) was built. The detailed running performance of each subsystem was comparatively analyzed in a full-scale test house in a cold climate zone. This integrated system showed many encouraging results in terms of the maintenance of a stable and comfortable indoor thermal environment during the winter season. The study building consumed electricity as convectional energy, which only accounted for about one-third of the total energy supplied for heating. However, our study also found some shortcomings in the system design. Feasible suggestions regarding the running procedures aimed at a more optimal and effective design were proposed. The systems proposed in this study could be used as a promising future technology for energy savings and emission reductions in rural buildings. The study could also help achieve targets for energy savings and renewable energy utilization in China and other countries.  相似文献   

3.
Shallow geothermal systems such as open and closed geothermal heat pump (GHP) systems are considered to be an efficient and renewable energy technology for cooling and heating of buildings and other facilities. The numbers of installed ground source heat pump (GSHP) systems, for example, is continuously increasing worldwide. The objective of the current study is not only to discuss the net energy consumption and greenhouse gas (GHG) emissions or savings by GHP operation, but also to fully examine environmental burdens and benefits related to applications of such shallow geothermal systems by employing a state-of the-art life cycle assessment (LCA). The latter enables us to assess the entire energy flows and resources use for any product or service that is involved in the life cycle of such a technology. The applied life cycle impact assessment methodology (ReCiPe 2008) shows the relative contributions of resources depletion (34%), human health (43%) and ecosystem quality (23%) of such GSHP systems to the overall environmental damage. Climate change, as one impact category among 18 others, contributes 55.4% to the total environmental impacts. The life cycle impact assessment also demonstrates that the supplied electricity for the operation of the heat pump is the primary contributor to the environmental impact of GSHP systems, followed by the heat pump refrigerant, production of the heat pump, transport, heat carrier liquid, borehole and borehole heat exchanger (BHE). GHG emissions related to the use of such GSHP systems are carefully reviewed; an average of 63 t CO2 equivalent emissions is calculated for a life cycle of 20 years using the Continental European electricity mix with 0.599 kg CO2 eq/kWh. However, resulting CO2 eq savings for Europe, which are between ?31% and 88% in comparison to conventional heating systems such as oil fired boilers and gas furnaces, largely depend on the primary resource of the supplied electricity for the heat pump, the climatic conditions and the inclusion of passive cooling capabilities. Factors such as degradation of coefficient of performance, as well as total leakage of the heat carrier fluid into the soil and aquifer are also carefully assessed, but show only minor environmental impacts.  相似文献   

4.
A method for estimating the effectiveness and CO2 emissions of advanced energy conversion systems from primary to final energy is presented. A traditional condensing power plant for electricity production and a fuel boiler for heat production based on natural gas were used as the reference system. Several potentially better energy chains were analysed including CHP, tri‐generation, heat pumps and efficiency improvements in final energy use. All above solutions could provide clear reductions in primary energy use and emissions, in most cases tens of per cents, but the results are sensitive to operational conditions. In a heat pump system, the primary energy savings are considerable but emission reductions may turn out to be marginal or even negative whereas in co‐generation the emission reductions are higher than energy savings. Striving for high conversion efficiencies would ensure sustained benefits from the advanced energy chain typologies over the reference system even in the less favourable cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Direct utilization of geothermal energy 2010 worldwide review   总被引:4,自引:0,他引:4  
This paper presents a review of the worldwide application of geothermal energy for direct utilization, and updates the previous survey carried out in 2005. We also compare data from 1995 and 2000 presented at World Geothermal Congresses in Italy and Japan, respectively (WGC95 and WGC2000). As in previous reports, an effort is made to quantify ground-source (geothermal) heat pump data. The present report is based on country update papers prepared for WGC2010 and other sources of data available to the authors. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy. Twelve additional countries were added to the list based on other sources of information. Direct utilization of geothermal energy in 78 countries is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009 is used in this paper and equals 48,493 MWt, almost a 72% increase over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere, this includes savings for geothermal heat pumps in the cooling mode (compared to using fuel oil to generate electricity).  相似文献   

6.
To evaluate the environmental impact of massive heat‐pump introduction on greenhouse gas (GHG) emissions, dynamic simulations of the overall electricity‐generation system have been performed for Belgium. The simulations are carried out with Promix, a tool that models the overall electricity‐generation system. For comparison, three heating devices are considered, namely conventional boilers, heat pumps and electrical resistance heating. The introduction of electric heating at the expense of classic heating increases the demand for electricity and generates a shift of emissions from fossil‐fuel heating systems to electrical power plants. The replaced classic fossil‐fuel‐fired heating represents emissions of about 300 kton. With regard to the heat‐pump scenarios, both direct heat‐pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat‐pump heating with a COP of 5 are investigated. The results of the simulations reveal that the massive introduction of heat‐pump heating is favourable to the environment. In Belgium, the largest reductions in GHG emissions occur with heat pumps for direct heating, combined with newly commissioned combined cycle (CC) gas‐fired plants or with accumulation heat‐pump heating. These scenarios bring about overall GHG emission reductions of approximately 200 kton compared with the reference case with conventional heating for the years 2000 and 2010. The amount of additional electricity‐related emissions depends on the considered heating device. In 2010, the scenario with accumulation heat pumps results in an overall decrease of Belgian GHG emissions by 0.15% compared with the reference scenario. The expansion of the electricity‐generation system with new CC plants has an important favourable impact on GHGs as well. In most cases, the combination of higher electricity demand and the construction of new gas‐fired CC plants will lead to lower overall GHG emissions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Optimal energy renovations of apartment buildings in Finland have a great impact on annual energy demand. However, reduction of energy demand does not necessarily translate into similar changes in peak power demand. Four different types of apartment buildings, representing the Finnish apartment building stock, were examined after optimal energy retrofits to see the influence of retrofitting on hourly power demand. Switching from district heating to ground-source heat pumps reduced emissions significantly under current energy mix. However, the use of ground-source heat pumps increased hourly peak electricity demand by 46–153%, compared to district heated apartment buildings. The corresponding increase in electrical energy demand was 30–108% in the peak month of January. This could increase the use of high emission peak power plants and negate some of the emission benefits. Solar thermal collectors and heat recovery systems could reduce purchased heating energy to zero in summer. Solar electricity could reduce median power demand in summer, but had only a little effect on peak power demand. The reduction in peak power demand after energy retrofits was less than the reduction in energy demand.  相似文献   

8.
搭建了太阳能、热泵辅助燃气的供热系统测试平台,对太阳能辅助燃气供热系统、热泵辅助燃气供热系统以及太阳能、热泵辅助燃气供热系统的热性能进行测试,并对三种供热系统的经济环境效益进行分析。试验结果表明,试验条件下,三种供热系统的修正后一次能源利用率分别为93.3%、92.8%、103.9%,与燃气供热系统相比,节能率分别为3.8%、3.2%和15.6%,年运行费用可节约275、236、1 016¥,每年减排CO2为123.00、106.00、455.00 kg。  相似文献   

9.
Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies on neighbouring areas as an electricity buffer though.  相似文献   

10.
With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base‐load system. The energy options for the base‐load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25‐year service life of the systems, considering tax savings due to depreciation and operating costs, and salvage value of equipment and building and resale price of land in the cash flow analysis. It was shown that the natural gas boiler option provided less expensive energy followed by the wood pellet heat producing technologies, sewer heat recovery, and geothermal heat pump. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for 37% of the heat production cost for the considered district‐heating center. The results show that the cost of produced heat from wood pellet grate burner is well comparable to that of the natural gas boiler. Emissions of the systems are also calculated in this study. It is shown that the natural gas boiler for the base‐load heat production would produce more than 4300 tonnes of GHG emission per year, while wood pellet burning systems are GHG neutral. Sensitivity analysis on various inputs to the economic model has been carried out. It was shown that 20% increase in capital cost of the natural gas base‐load system or 1% decrease in wood pellet price inflation would make the wood pellet grate burner economically preferable to the natural gas boiler. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

12.
Member countries of the European Union have released targets to reduce carbon dioxide emissions by 80% by the year 2050. Energy use in buildings is a major source of these emissions, which is why this study focused on the cost-optimal renovation of Finnish apartment buildings. Apartment buildings from four different construction years (pre-1976, 1976–2002, 2003–2009 and post-2010) were modelled, using three different heating systems: district heating, ground-source heat pump and exhaust air heat pump. Multi-objective optimisation was utilised to find the most cost-effective energy renovation measures. Most cost-effective renovation measures were ground-source heat pumps, demand-based ventilation and solar electricity. Additional thermal insulation of walls was usually too expensive. By performing only the cost-effective renovations, the emissions could be reduced by 80%, 82%, 69% and 68%, from the oldest to the newest buildings, respectively. This could be done with the initial investment cost of 296, 235, 115 and 104?€/m2, respectively.  相似文献   

13.
A study of the economic performance of a solar system, air-to-air heat pumps, and several solar-assisted heat pump systems (SAHP) for residential heating is presented. The study is based on a computer simulation which is supported by monitoring data from an existing installation, the Terrosi-Grumman house in Quechee, Vermont. Three different SAHP configurations as well as conventional solar and air-to-air heat pump systems are evaluated for a northern New England climate. All systems are evaluated both with and without a peak/off-peak electricity price differential.

The SAHP systems are: (1) the series system in which the solar storage serves as the energy source for the heat pump, (2) the series off-peak system in which the heat pump in the series system operates only during certain periods of the day under a special electric rate structure, (3) a parallel system in which the environment is the source for both the collector and the heat pump, and (4) a peak/off-peak parallel system in which oil is operated during the period of peak electricity price. Hybrid air-to-air heat pump/oil systems are also evaluated.

For all alternatives, two different economic analyses are used: (1) the rate of return which emphasizes the return earned on the capital investment, and (2) the life cycle critical price which compares the current capital cost to the present worth of the stream of all future energy savings.

Both economic measures select the air-to-air heat pump/on-peak oil system when there is a peak/off-peak electricity price differential. (In this case the ratio of off-peak to average price is 40 per cent.) When there is no price differential, the air-to-air heat pump/oil system is still preferred, but the oil system is now operated when the ambient temperature falls below −6.7°C (20°F). When the electricity price is doubled (from 19.5 to 40$/GJ), solar/oil is the preferred system.  相似文献   


14.
Direct hot water production consumes about 4% of the total energy use in Hong Kong, and about 20% when considering only the domestic sector. For water heating the energy sources are mostly town gas, liquefied petroleum gas and electricity. The use of heat pump or solar water heating, particularly the solar-assisted heat pump options, is not popular. In this paper, the potential application of a unitary type direct-expansion solar-assisted heat pump (DX-SAHP) system was examined. A numerical model of the DX-SAHP system was first introduced. From the simulation results with the use of the Typical Meteorological Year (TMY) weather data of Hong Kong, the system was found achieving a year-average coefficient of performance (COP) of 6.46, which is much better than the conventional heat pump system performance. The potential use of DX-SAHP therefore deserves further evaluation.  相似文献   

15.
To evaluate the environmental impact of massive heat-pump introduction on greenhouse gas (GHG) emissions in different electricity-generation systems, dynamic simulations have been carried out for four European countries, namely, Belgium, France, Germany and the Netherlands. For this purpose, the simulations are performed with Promix, a tool that models the overall electricity-generation system. Three heating devices are considered for each country, namely classic fossil-fuel heating, heat pumps and electric resistance heating. Both direct heat-pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat-pump heating with a COP of 5 are investigated. The introduction of electric heating in an electricity-generation system increases the demand for electricity and generates a shift of emissions from fossil-fuel heating systems to electrical plants. The results of the simulations reveal that the massive introduction of either heat pump or resistance heating is always favourable to the environment in France. The most environmentally friendly scenario in 2010 is projected to reduce GHG emissions by about 3.8 Mton compared to the reference scenario. In Belgium and Germany, the largest reduction in GHG emissions occurs with accumulation heat pumps. Belgium can save up to 220 kton of GHG emissions, while Germany can attain reductions of 800 kton in 2010. In the Netherlands, a significant reduction can be achieved by considering the addition of gas-fired combined cycle (CC) power plants, together with the introduction of electric heating, resulting in emissions savings of 410 kton.  相似文献   

16.
Climate change affects the need for heating and cooling. This paper examines the impact of gradually warming climate on the need for heating and cooling with an econometric multivariate regression model for five countries in Europe along the south–north line. The predicted changes in electricity demand are then used to analyze how climate change impacts the cost of electricity use, including carbon costs. Our main findings are, that in Central and North Europe, the decrease in heating due to climate warming, dominates and thus costs will decrease for both users of electricity and in carbon markets. In Southern Europe climate warming, and the consequential increase in cooling and electricity demand, overcomes the decreased need for heating. Therefore costs also increase. The main contributors are the role of electricity in heating and cooling, and the climatic zone.  相似文献   

17.
With increase in demand for electricity at 7.5% per year, the major concern of Saudi Arabia is the amount of CO2 being emitted. The country has the potential of generating 200×106 kWh from hydrothermal sources and 120×106 terawatt hour from Enhanced Geothermal System (EGS) sources. In addition to electricity generation and desalination, the country has substantial source for direct application such as space cooling and heating, a sector that consumes 80% of the electricity generated from fossil fuels. Geothermal energy can offset easily 17 million kWh of electricity that is being used for desalination. At least a part of 181,000 Gg of CO2 emitted by conventional space cooling units can also be mitigated through ground-source heat pump technology immediately. Future development of EGS sources together with the wet geothermal systems will make the country stronger in terms of oil reserves saved and increase in exports.  相似文献   

18.
The evaluation, monitoring and reduction of the heating and cooling consumptions are topics of increasing importance. One promising technology is the geothermal heat pump. Despite its undoubted advantages compared to fossil fuels in terms of RES production, CO2 reduction and primary energy savings, there are still significant barriers for the creation of sustainable local markets. Many regions present similar conditions in terms of climate, geology, hydrogeology, infrastructure and political conditions. Because of the context-driven nature of shallow geothermal systems, similarities should be taken into account and strategies shared across borders to foster the introduction and exploitation of shallow geothermal energy.Focusing on the results of the LEGEND Project, this paper presents an attempt at creating an interregional strategy for the widespread introduction of geothermal heat pumps in the Adriatic area, which includes EU and non-EU countries.The multi-level approach adopted (a combination of desk studies on the transferability potential, pilot plants across the regions and programs to involve, educate and train stakeholders) allowed to set up the strategy. Therefore, different actions are proposed to stimulate the development of the market, whose interconnection across the Adriatic can accelerate the achievement of the main energy and climate targets for all the countries involved.  相似文献   

19.
Industrial waste heat may be one of the answers to future energy demands. Depending on the temperature, industrial waste heat may be used to produce electricity or meet cooling or heating demands at different temperature levels. However, in order to estimate the influence the waste heat may have in future energy systems, the magnitude of the industrial waste heat in the different countries need to be estimated. For Germany, so far, only top-down analyses of the waste heat potential exist, using key figures derived from other studies in other countries. In this paper, the first bottom-up approach for estimating the industrial waste heat potential in Germany is presented. For this approach, an algorithm to evaluate and test the mandatory emission report data from German production companies was developed. In a second step, round about 81,000 data sets have been evaluated to calculate a conservative and lower boundary value for the industrial waste heat. As this conservative, lower boundary based on the collected data from the German industry, the waste heat volume was evaluated as 127 PJ/a or 13 % of the industrial fuel consumption. Results were used to derive key figures with which the missing share of the data was approximated.  相似文献   

20.
Poland is one of the biggest producers of hard coal in the world and uses its domestic coal for electricity and heat generation: 42 million tons for electricity and heat production in power industry, and about 8–10 million tons used by small district-heating stations annually. Changes in demand for coal, destined for heat generation, result from the changes in the forecast structure of energy carriers to be used by local heating stations and the new emission standards coming, this year, into effect in Poland. To meet the regulations, the heat generators have to keep to environmental requirements. The cheapest solution is to burn the compliance coal. The comparison of the forecasts for coal demand and supply and the possibility of adjusting quantitative and qualitative requirements of the smaller coal consumers points out that it would be possible, when the market rules, to heal the situation between coal producers and coal consumers in Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号