首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Renewables Portfolio Standard (RPS) in Japan requires that approximately 1.35% of each retail supplier's electricity sales in FY2010 come from renewable energy sources (RES), for example, photovoltaics, wind, biomass, geothermal, and small hydropower. To help retail suppliers and renewable generators develop effective strategies, this study provides a quantitative analysis of the impact of this measure. We assume the supply conditions for electricity generation from renewable energy sources (RES-E) based on regional resource endowments, and we derive the cost-effective compositions of renewable portfolios, RES-E certificate prices, and additional costs to retail suppliers. The future prospects of RES-E are assessed based on technology, region, and year up to FY2010. The analysis reveals that wind power and biomass power generated from municipal waste will provide the majority of the total supply of RES-E under the RPS. It also indicates that the marginal price of RES-E certificates will be approximately 5.8 JPY/kWh (5.2 USc/kWh) in FY2010, in the case wherein the marginal price of electricity is assumed to be 4 JPY/kWh (3.6 USc/kWh). In order to elaborate on this further, sensitivity analyses for some parameters of RES and the price of electricity are provided. The dynamic supply curves of RES-E certificates are also indicated.  相似文献   

2.
The European market for renewable electricity received a major stimulus from the adoption of the Directive on the Promotion of Renewable Electricity. The Directive specifies the indicative targets for electricity supply from renewable energy sources (RES-E) to be reached in European Union (EU) Member States in the year 2010. It also requires Member States to certify the origin of their renewable electricity production. This article presents a first EU-wide quantitative evaluation of the effects of meeting the targets, using an EU-wide system for tradable green certificates (TGC). We calculate the equilibrium price of green certificates and identify which countries are likely to export or import certificates. Cost advantages of participating in such an EU-wide trading scheme are determined for each of the Member States. Moreover, we identify which choice of technologies results in meeting targets at least costs. Results are obtained from a model that quantifies the effects of achieving the RES-E targets in the EU with and without trade. The article provides a brief insight in this model as well as the methodology that was used to specify cost potential curves for renewable electricity in each of the 15 EU Member States. Model calculations show that within the EU-wide TGC system, the total production costs of the last option needed to satisfy the overall EU RES-E target equals 9.2 eurocent/kWh. Assuming that the production price of electricity on the European power market would equal 3 eurocent/kWh in the year 2010, the indicative green certificate price equals 6.2 eurocent/kWh. We conclude that implementation of an EU-wide TGC system is a cost-efficient way of stimulating renewable electricity supply.  相似文献   

3.
An understanding of electricity consumption due to residential air conditioning (AC) may improve production and environmental impact strategy design. This article reports on a study of peak and seasonal electricity consumption for residential air conditioning in the region of Madrid, Spain. Consumption was assessed by simulating the operation of AC units at the outdoor summer temperature characteristics of central Spain. AC unit performance when operating under part load conditions in keeping with weather conditions was also studied to find cooling demand and energy efficiency. Likewise final electricity consumption was computed and used to calculate energy costs and greenhouse gas emissions (GHGs). Cooling demand, when family holidays outside the region were factored into the calculations, came to 1.46 × 109 kWh. Associated seasonal electricity demand was 617 × 106 kWh and seasonal performance of AC units around 2.4. Electricity consumption in the whole region was observed to peak on 30 June 2008 at 5.44 × 106 kW, being the load attributable to residential AC 1.79 × 106 kW, resulting about 33% of the total peak consumption. The seasonal cost per household was about €156 and the total equivalent warming impact was 572 × 103 t CO2. The method proposed can be adapted for use in other regions.  相似文献   

4.
Following the European Union strategy concerning renewable energy (RE), Portugal established in their national policy programmes that the production of electrical energy from RE should reach 45% of the total supply by 2010. Since Portugal has large forest biomass resources, a significant part of this energy will be obtained from this source. In addition to the two existing electric power plants, with 22 MW of power capacity, 13 new power plants having a total of 86.4 MW capacity are in construction. Together these could generate a combination of electrical and thermal energy, known as combined heat and power (CHP) production. As these power plants will significantly increase the exploitation of forests resources, this article evaluates the potential quantities of available forest biomass residue for that purpose. In addition to examining the feasibility of producing both types of energy, we also examine the potential for producing only electric energy. Results show that if only electricity is generated some regions will need to have alternative fuel sources to fulfil the demand. However, if cogeneration is implemented the wood fuel resource will be sufficient to fulfill the required capacity demand.  相似文献   

5.
A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system’s components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity.  相似文献   

6.
We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2–2.2 cents/kWh and from dedicated biomass facilities for 3.0–5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity.  相似文献   

7.
A process model was developed to predict the mass and energy balance for a full-scale (115 t d−1) high-solids anaerobic digester using research data from lab and pilot scale (1-3000 kg d−1 wet waste) systems. Costs and revenues were estimated in consultation with industry partners and the 20-year project cash flow, net present worth (NPW), simple payback, internal rate of return, and revenue requirements were calculated. The NPW was used to compare scenarios in order to determine the financial viability of using a generator for heat and electricity or a pressure swing adsorption unit for converting biogas to compressed natural gas (CNG).The full-scale digester consisted of five 786 m3 reactors (one biogasification reactor and four hydrolysis reactors) treating a 50:50 mix (volatile solids basis) of food and green waste, of which 17% became biogas, 32% residual solids, and 51% wastewater. The NPW of the projects were similar whether producing electricity or CNG, as long as the parasitic energy demand was satisfied with the biogas produced. When producing electricity only, the power output was 1.2 MW, 7% of which was consumed parasitically. When producing CNG, the system produced 2 hm3 y−1 natural gas after converting 22% of the biogas to heat and electricity which supplied the parasitic energy demand. The digester system was financially viable whether producing electricity or CNG for discount rates of up to 13% y−1 without considering debt (all capital was considered equity), heat sales, feed-in tariffs or tax credits.  相似文献   

8.
Poland, as many other countries, has ambitions to increase the use of renewable energy sources. In this paper, we review the current status of bioenergy in Poland and make a critical assessment of the prospects for increasing the share of bioenergy in energy supply, including policy implications. Bioenergy use was about 4% (165 PJ) of primary energy use (3900 PJ) and 95% of renewable energy use (174 PJ) in 2003, mainly as firewood in the domestic sector. Targets have been set to increase the contribution of renewable energy to 7.5% in 2010, in accordance with the EU accession treaty, and to 14% in 2020. Bioenergy is expected to be the main contributor to reaching those targets. From a resource perspective, the use of bioenergy could at least double in the near term if straw, forestry residues, wood-waste, energy crops, biogas, and used wood were used for energy purposes. The long-term potential, assuming short rotation forestry on potentially available agricultural land is about one-third, or 1400 PJ, of current total primary energy use. However, in the near term, Poland is lacking fundamental driving forces for increasing the use of bioenergy (e.g., for meeting demand increases, improving supply security, or further reducing sulphur or greenhouse gas emissions). There is yet no coherent policy or strategy for supporting bioenergy. Co-firing with coal in large plants is an interesting option for creating demand and facilitating the development of a market for bioenergy. The renewable electricity quota obligation is likely to promote such co-firing but promising applications of bioenergy are also found in small- and medium-scale applications for heat production. Carbon taxes and, or, other financial support schemes targeted also at the heating sector are necessary in the near term in order to reach the 7.5% target. In addition, there is a need to support the development of supply infrastructure, change certain practices in forestry, coordinate RD&D efforts, and support general capacity building. The greatest challenge for the longer term lies in reforming and restructuring the agricultural sector.  相似文献   

9.
This article proposes a calculation methodology that starts from the demand calculation to supply a fleet bus with renewable hydrogen based on the electrolysis process until the energetic, economic, and environmental analyses, involving all the processes of the productive chair. Also considering the dynamic behaviour of the following hydrogen processes: production, storage, and use. The simplified scheme of the proposed system configuration to be studied consists of the use of alternative and renewable sources of energy (solar-wind-biogas) to generate electrical energy in order to produce hydrogen from electrolysis of the water, which is stored in its gaseous state and subsequently redirected to a filling station to be used as vehicle fuel in buses. The results show that to feed one bus the hybrid system generates an average of 78,110 kWh/month with an installed capacity of 1101.905 kW, producing 1209.90 kgH2/month through the electrolysis process from water. The results also show a range of electricity generation costs between 1.130 and 0.123 US$/kWh and H2 production between 0.963 and 0.110 US$/kWh. Concluding that the application of renewable energies to produce hydrogen and electricity for the public transport sector is an attractive alternative in the future throughout the country, because the proposed system is technically, economically and ecologically viable.  相似文献   

10.
Solar and wind energies are likely to play an important role in the future energy generation in Oman. This paper utilizes average daily global solar radiation and sunshine duration data of 25 locations in Oman to study the economic prospects of solar energy. The study considers a solar PV power plant of 5-MW at each of the 25 locations. The global solar radiation varies between slightly greater than 4 kWh/m2/day at Sur to about 6 kWh/m2/day at Marmul while the average value in the 25 locations is more than 5 kWh/m2/day. The results show that the renewable energy produced each year from the PV power plant varies between 9000 MWh at Marmul and 6200 MWh at Sur while the mean value is 7700 MWh of all the 25 locations. The capacity factor of PV plant varies between 20% and 14% and the cost of electricity varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. The study has also found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. Renewable energy support policies that can be implemented in Oman are also discussed.  相似文献   

11.
The objective of this article is to examine the consequences of technological developments on the market diffusion of different renewable electricity technologies in the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system will be implemented, and a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that diffusion of onshore wind energy is relatively robust, regardless of technological development, but diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and (existing) biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic scenario, in 2020 the market price for RES-E is 1 €ct/kWh lower than in the pessimistic scenario (about 7 vs. 8 €ct/kWh). As a result, total RES-E production costs are 19% lower, and total governmental expenditures for RES-market stimulation are 30% lower in the optimistic scenario.  相似文献   

12.
At present, the utilization of timber in the Northern part of the Scottish Highlands is low due to a lack of a wood utilizing industry. As a consequence, the majority of forest owners do not receive any income from timber and in some cases stumpage prices can even be negative. At the same time, increasing prices of oil, gas and electricity pose a great challenge for local industries and homeowners. The establishment of wood fueled heating systems is therefore expected to improve the situation and at the same time create a market for the local timber resources. Consequently, a local energy source to produce heat and electricity at a competitive price would have positive benefits for both local industries and forest owners. Due to the current lack of competition, roundwood could be chipped for fuel, which has many associated benefits compared to the harvesting and chipping of logging residues. It is the aim of this research to apply existing Finnish know-how in regards to wood fuel harvesting in order to develop and investigate the price level of sustainable and local wood fuel supply chains.To determine the most suitable supply chain for forest fuels, various research methods were applied. An estimation of the forest resources in the Wick area was the first step of the research. The different cost components of the supply chain such as cutting, forwarding and chipping were then calculated based on Finnish experiences and adapted to conditions in Northern Scotland. Detailed transportation distance calculations and cost of transportation were calculated using GIS tools.Of the various supply chain designs considered, chipping at the landing seems to be the most suitable option. Chipping the roundwood at a central terminal would also be feasible; however, a suitable site would have to be identified since chipping of the material at the heating plant is not an option. Calculations indicate that forest chips can be delivered starting from approximately 20 € MWh−1 within a 50 km transportation distance when chipping is at roadside. If the transportation distance is 100 km wood chips could be delivered at approximately 23 € MWh−1. Results from the GIS analysis indicate that a sufficient supply of raw material will be available in the future. According to these calculations forest fuels can be a competitive energy source for heat and electricity production in Northern Scotland.  相似文献   

13.
In this study, a hybrid system consisted of 10 kW wind and 1 kWp PV array is built to meet the load demand of a raise chucker partridge raising facility by renewable energy sources. The facility has an average energy consumption of about 20.33 kWh/day, with a peak demand of 2.4 kW. The solar radiation data and wind data of the region are analyzed for sizing of the renewable energy system. The performance of each alternative system is examined in terms of energy efficiency, and H2 production capacity of the hybrid system from due to excessive electrical energy is studied. A Matlab-Simulink Software is used for analyzing the system performance. The average range of state of charge varies between 56.6% and 88.3% monthly from April to July. The amount of hydrogen production by excess electricity is 14.4 kg in the month of July, due to the high wind speed and solar radiation. Energy efficiency of the electrolyser is found to be varying between 64% and 70% percent. Energy efficiency of each hybrid system is calculated. The overall energy efficiency of wind-electrolyser system varies between 5% and 14% while the energy efficiency of PV-electrolyser system changes within a narrower range, as between 7.9% to and 8.5%, respectively.  相似文献   

14.
The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals.  相似文献   

15.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

16.
Large-scale sustainable energy systems will be necessary for substantial reduction of CO2. However, large-scale implementation faces two major problems: (1) we must replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy resources have fluctuating output, to increase the fraction of electricity from them, we must learn to maintain a balance between demand and supply. Plug-in electric vehicles (EVs) could reduce or eliminate oil for the light vehicle fleet. Adding “vehicle-to-grid” (V2G) technology to EVs can provide storage, matching the time of generation to time of load. Two national energy systems are modelled, one for Denmark, including combined heat and power (CHP) and the other a similarly sized country without CHP (the latter being more typical of other industrialized countries). The model (EnergyPLAN) integrates energy for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind resource and weather-driven need for heat). Four types of vehicle fleets are modelled, under levels of wind penetration varying from 0% to 100%. EVs were assumed to have high power (10 kW) connections, which provide important flexibility in time and duration of charging. We find that adding EVs and V2G to these national energy systems allows integration of much higher levels of wind electricity without excess electric production, and also greatly reduces national CO2 emissions.  相似文献   

17.
A low‐carbon electricity supply for Australia was simulated, and the installed capacity of the electrical grid was optimized by shifting the electricity demand of residential electric water heaters (EWHs). The load‐shifting potential of Australia was estimated for each hour of the simulation period using a nationwide aggregate EWH load model on a 90 × 110 raster grid. The electricity demand of water heaters was shifted from periods of low renewable resource and high demand to periods of high renewable resource and low demand, enabling us to effectively reduce the installed capacity requirements of a 100%‐renewable electricity grid. It was found that by shifting the EWH load by just 1 hour, the electricity demand of Australia could be met using purely renewable electricity at an installed capacity of 145 GW with a capacity factor of 30%, an electricity spillage of 20%, and a generation cost of 15.2 ¢/kWh. A breakdown of the primary energy sources used in our scenario is as follows: 43% wind, 29% concentrated solar thermal power, and 20% utility photovoltaic. Sensitivity analysis suggested that further reduction in installed capacity is possible by increasing the load‐shifting duration as well as the volume and insulation level of the EWH tank.  相似文献   

18.
A feasibility study exploring the use of geothermal energy in hydrogen production is presented. It is possible to use a thermal energy to supply heat for high temperature electrolysis and thereby substitute a part of the relatively expensive electricity needed. A newly developed HOT ELLY high temperature steam electrolysis process operates at 800 – 1000°C. Geothermal fluid is used to heat fresh water up to 200°C steam. The steam is further heated to 900°C by utilising heat produced within the electrolyser. The electrical power of this process is reduced from 4.6 kWh per normalised cubic meter of hydrogen (kWh/Nm3 H2) for conventional process to 3.2 kWh/Nm3 H2 for the HOT ELLY process implying electrical energy reduction of 29.5%. The geothermal energy needed in the process is 0.5 kWh/Nm3 H2. Price of geothermal energy is approximately 8–10% of electrical energy and therefore a substantial reduction of production cost of hydrogen can be achieved this way. It will be shown that using HOT ELLY process with geothermal steam at 200°C reduces the production cost by approximately 19%.  相似文献   

19.
This paper presents a model to quantify the impact of electric power outages on GDP by using Cobb–Douglas production function to develop an economic relationship between the reliability of the electric power supply system and the cost of electric energy unserved. Our findings show that average costs for providing a stable power supply are much lower than disruption costs, which is supported by recurring to the data available of Shanghai. Estimated by using Shanghai’s macroeconomic data of 1990–2006, this relationship indicates that the impact of electricity service disruption on Shanghai’s GDP is about 48.18 × 10CNY in 2006, matching an alternative “back-of-envelope” estimate of 50.91 × 108 CNY. The estimated costs per kWh unserved are 1.81–10.26 CNY in 1990–2006, mirroring the increasing importance of electricity in the period’s economic development. These results demonstrate the usefulness of our approach for quantifying the reliability benefits of investments in electricity infrastructure.  相似文献   

20.
Serbian government has recently introduced the system of feed-in tariffs for electricity generated from renewable sources. The proposed feed-in tariff for photovoltaic electricity is set to 0.23 €/kWh paid for 12 years, with the PV electricity produced after the first 12 years being sold at the grid electricity market price for the rest of the plant lifetime. Although such FIT could have been justified by the small, average retail grid electricity price of just 0.054 €/kWh for Serbian households, the investment appraisal of a real case of 2.82 kWp PV power plant in two Serbian cities of Zlatibor and Negotin, clearly illustrates that the proposed FIT framework is not sufficient to attract investments into PV in Serbia. In the second part of the paper, we have analyzed alternative, more reasonable feed-in tarrif frameworks, with the goal of selecting those able to sustain the PV adoption and diffusion in Serbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号