共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia. 相似文献
2.
3.
Kamil Kaygusuz 《Renewable & Sustainable Energy Reviews》2012,16(2):1116-1126
Today, there are 1.4 billion people around the world that lack access to electricity, some 85% of them in rural areas. Without additional dedicated policies, by 2030 the number of people drops, but only to 1.2 billion. Some 15% of the world's population still lack access, the majority of them living in Sub-Saharan Africa. The number of people relying on the traditional use of biomass is projected to rise from 2.7 billion today to 2.8 billion in 2030. Addressing these inequities depends upon international recognition that the projected situation is intolerable, a commitment to effect the necessary change, and setting targets and indicators to monitor progress. A new financial, institutional and technological framework is required, as is capacity building in order to dramatically scale up access to modern energy services at the local and regional levels. In this paper, we discussed the energy situation of the developing countries for sustainable development. 相似文献
4.
Turkey has a total gross hydropower potential of 433 GWh/year, but only 125 GWh/year of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower, biomass, geothermal, solar and wind. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Over the last two decades, global electricity production has more than doubled and electricity demand is rising rapidly around the world as economic development spreads to emerging economies. Not only has electricity demand increased significantly, it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries. 相似文献
5.
A regression analysis is performed to make projections for the Canadian energy production and consumption. These have been increasing and are projected to increase even further in the near future. The primary energy production and consumption are projected to increase by 52% and 34%, respectively, by 2025 over 2004 if business as usual. The amount of fossil energy resources is finite and the extraction, transportation and combustion of fossil fuels cause environmental pollution and climate change. On the other hand, energy plays an important role in the economic and social development of Canada. Canada can develop further from an energy balance point of view, but this alone cannot be sustainable, because of the negative consequences of the major energy use on the environment. Application of energy localization and diversification is a promising solution, but in order to reach that, better energy efficiency and more use of renewable energy are necessary. Instead of non-compulsory policies Canada’s policy approach should have more compulsory policies. Only then Canada can be made to develop further in a sustainable manner. 相似文献
6.
Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies—two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development. 相似文献
7.
Renewable energy usage in Africa has been reviewed using South Africa, Egypt, Nigeria and Mali as case studies. The various national energy policies of these countries were analysed and areas that require attention to achieve sustainability were highlighted. On the overall, the success of sustainable development in Africa lies in addressing the imminent energy crisis in the continent. Excessive usage of fuel wood is already creating considerable environmental problems especially in the Sahel. Africa has all the potentials to solve its energy problems if appropriate infrastructural support can be provided for harnessing the abundant renewable resources in the continent, and if skills are pooled together and experiences shared in addressing the key issues. 相似文献
8.
The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. 相似文献
9.
The paper briefly summarizes China’s energy situation and sustainable development strategy as they were by 2009. The energy consumption in 2009 is reported to be 3.1 billion tons standard coal equivalent, 1/7 of the world total, 6.3% higher than in the year 2008, and its share of world CO2 emissions increased rapidly to 20.3% in 2006. These trends are most likely to continue with China’s plan to accomplish its social and economy development goals. To address these problems and also respond to increasing world pressure for reduction of greenhouse gas emissions, the Chinese government plans and has legislated promotion of energy conservation, efficiency, renewable energy technologies and use, and reduction of energy-related environmental impacts to reduce energy intensity by 20% during the 2006-2010 period, and to reduce the CO2 emission/GDP ratio by 40-45% by 2020 relative to 2005. China is facing severe energy-related challenges that conflict resources shortages with the planned rapid economic development, energy use with the related environmental pollution, and new technology with the old production/consumption patterns. It is recognized that energy development must, however, follow a sustainable path to coordinate economy growth, social development, and environmental protection. 相似文献
10.
Zhongren Zhou Wenliang Wu Qun Chen Shufeng Chen 《Renewable & Sustainable Energy Reviews》2008,12(8):2227-2239
The status of rural household energy consumption plays an important role in farmers’ daily life, especially in developing countries or regions. Here, we review the evolution of the rural household energy consumption structure in northern China from 1996 to 2005. Studies indicate that the proportion of straw, firewood, and coal consumption in total energy consumption have remained at 88.8–91.0%, whereas the proportion of high-quality commercial energy and modern renewable energy is still very low. The main challenges for the sustainable development of rural household energy supply are an unreasonable energy consumption structure, low-energy efficiency, serious environmental degradation, a large gap in energy supply among regions, and difficulty in developing renewable energy. We suggest some countermeasures to overcome the obstacles involved in the sustainable development of rural household energy in northern China, from energy sources to sociopolitical policies. 相似文献
11.
Jiangsu is one of the provinces in China that have great population density and fast economic development. Therefore it is important to ensure large quantity of stable and high-quality energy supply for its development. With the development of the economy, the demand for energy is increasing very fast while the energy supply is going short. The supply of the local primary energy is only 23% of the demand. The final energy consumption reaches 78 Mtce (1 tce=7,000,000 kcal), among which the industry and construction account for 78%. Though the total consumption is large, the energy consumption per capita is only 1.13 tce, the electricity consumption per capita 1017 kW, and the household electricity consumption per capita is 138 kW. Coal accounts for about 76% of the total energy consumed. This paper discusses utilization ratio of energy and the serious pollution caused by energy consumption. 相似文献
12.
Henrik Lund 《Energy》2007
This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies for integrating renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100% renewable energy system. The conclusion is that such development is possible. The necessary renewable energy sources are present, and if further technological improvements of the energy system are achieved the renewable energy system can be created. Especially technologies of converting the transportation sector and the introduction of flexible energy system technologies are crucial. 相似文献
13.
We propose in this paper an integrated energy strategy based on a systems approach to address the energy challenges and energy dilemma in China. First, we give a review of existing approaches to energy planning and strategic management, followed by a discussion on the major relationships among energy, economical, environmental and societal systems. Next, we present a conceptual system model with alternative solutions and clarify corresponding concepts. Based on the results, we propose, summarize, and present strategic ideas as policy implications for China’s decision makers. In conclusion, we determine that China should enhance strategic planning and regulation from a life cycle viewpoint of the whole society, prioritize energy saving, continuously improve incumbent energy, and rationally develop alternative energy. 相似文献
14.
Judith A. Cherni Isaac Dyner Felipe Henao Patricia Jaramillo Ricardo Smith Raúl Olalde Font 《Energy Policy》2007
Energy supply to the rural poor in developing countries is a complex activity that transcends the simple selection of a best technology. This paper explains the outcomes achieved by using a new multi-criteria decision-support system to assist in calculating the most appropriate set of energy options for providing sufficient power to fulfil local demands that improve livelihoods. The elicitation of the priorities of future users, which are subsequently integrated into the energy selection process, is seen as a mechanism for the promotion of energy policies that ensure that technological developments reduce poverty. The sustainable rural energy decision support system (SURE DSS), a methodological package and software designed by the research team RESURL builds upon technical and non-technical features of energy development in remote poor areas, drawing on a sustainable livelihoods approach as part of its rationale. SURE enables simulations and calculation of the disparities that may arise between current and potential livelihoods after specific energy solutions have been installed, as well as measuring potential trade-offs among alternative livelihoods. The paper reports the outcome of an application of SURE to the case of a remote Colombian rural community whose total energy demands are only partly met through a diesel generator. 相似文献
15.
Yuzheng Lu Yixiao Cai Loembe Souamy Xiang Song Lei Zhang Jun Wang 《International Journal of Hydrogen Energy》2018,43(28):12870-12891
Fuel cell technology motivates a variety of benefits, which are barely offered by other energy technologies. The fuel cell can be obtained through natural resources—biomass, coal and water, which are abundant in China. More importantly, most of these are sustainable and realize ecological circulation. Being blessed with a source of renewable energy, fuel cell technology is favorably promoted in China. Simultaneously, fuel cell technology offers China great opportunities to meet the energy consumption demand for its sustainable development. In this proposed method, useful results of leading research in solid oxide fuel cell relevant research in China are reviewed and the hybrid system based fuel cell technology is particularly detailed. Additionally, the effects of some important renewable energy parameters, future challenges and constructive recommendations for China's energy technology are suggested. 相似文献
16.
Distributed energy generation and sustainable development 总被引:2,自引:0,他引:2
Conventionally, power plants have been large, centralized units. A new trend is developing toward distributed energy generation, which means that energy conversion units are situated close to energy consumers, and large units are substituted by smaller ones. A distributed energy system is an efficient, reliable and environmentally friendly alternative to the traditional energy system. In this article, we will first discuss the definitions of a distributed energy system. Then we will evaluate political, economic, social, and technological dimensions associated with regional energy systems on the basis of the degree of decentralization. Finally, we will deal with the characteristics of a distributed energy system in the context of sustainability. This article concludes that a distributed energy system is a good option with respect to sustainable development. 相似文献
17.
《Renewable & Sustainable Energy Reviews》2008,12(6):1622-1640
Over the last two decades, global electricity production has more than doubled and electricity demand is rising rapidly around the world as economic development spreads to emerging economies. Not only has electricity demand increased significantly, it is the fastest growing end-use of energy. Therefore, technical, economic and environmental benefits of hydroelectric power make it an important contributor to the future world energy mix, particularly in the developing countries. This paper deals with policies to meet increasing energy and electricity demand for sustainable energy development in Turkey. Turkey has a total gross hydropower potential of 433 GWh/year, but only 125 GWh/year of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country would be tapped. Turkey's total economically usable small hydropower potential is 3.75 GWh/year. 相似文献
18.
This paper introduces the ECOS 2009 conference World Energy Panel, and presents the opening talk that briefly surveys the present (2009) situation in sustainable energy development. Recent (2008) estimates and forecasts of the oil, gas, coal resources and their reserve/production ratio, nuclear and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation (including hydrogen, fuel cells, micro-power systems, and the futuristic concept of generating power in space for terrestrial use), is presented. Comments about energy use in general, with more detailed focus on insufficiently considered areas of transportation and buildings are brought up. Ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R&D areas, their potential, foreseen improvements and their time scale, and last year’s trends in government funding are presented. 相似文献
19.
This study outlines the economic feasibility for utilization of solar heating systems for some buildings in the selected typical cities in different climatic regions of Iran. The feasibility of application of the solar heating systems has been determined by means of proper economic criteria and a life time of 25 years for capital investment. It has been found that utilization of such systems could be feasible in some of the regions for specific applications. 相似文献
20.
Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Iran has geothermal energy potential. The Iranian government is considerable attention to the utilization of renewable energy, especially wind, solar and geothermal energies. Due to recent advancements in geothermal energy, many investors in the country have become interested in investing in this type of energy. Geothermal studies in Iran started in 1975 with a cooperative between the ministry of Energy of Iran and ENEL Company from Italy. Preliminary studies indicated potential for geothermal power generation in four areas in northern Iran (Khoy-Maku, Sabalan, Sahand and Damavand at Azarbaijan Gharbi, Ardebil, Azarbaijan Sharghi and Tehran provinces), respectively. Geothermal development in Iran has gained momentum in the last five years with increased exploration and industry growth in the country. Iran is developing a geothermal plant for power production. Iran government plans to build 2000 MW of renewable energy capacity over the next five years. Total projected use (geothermal capacity) has been estimated 100 MW at the end of 2010. Exploration drilling is currently in-progress for Meshkinshahr project in North-Western Iran. The Sabalan geothermal power plant is expected to produce 50 MW electric powers in 2011. The plants are planned by Iran Ministry of Energy and the Renewable Energy Organization of Iran (SUNA). This study presents a brief introduction to the resource, status and prospect of geothermal energy in Iran. 相似文献