首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
湿法烟气脱硫技术进展   总被引:1,自引:0,他引:1  
丰琳  王海芳 《广州化工》2012,40(12):55-57
二氧化硫的污染情况已引起世界各国的广泛关注,通过对几种主要湿式脱硫工艺的对比研究,从半胱氨酸亚铁溶液同时脱硫脱氮工艺技术中归纳出一种湿法烟气脱硫技术———胱氨酸脱硫技术,阐述了胱氨酸脱硫技术的反应机理和国内外研究现状,并总结出此方法的优缺点,是一种很有潜力的脱硫方法。  相似文献   

2.
白云石湿法烟气脱硫技术   总被引:4,自引:0,他引:4  
煤炭是贵州省最重要的能源,贵州煤烟型大气污染严重,脱硫任务更为艰巨,本文提出针对贵州煤炭含硫率高,要求脱硫效率高,利用贵州丰富的白云岩资源作为脱硫剂,采用白云石湿法烟气脱硫技术,这种技术较现有的石灰石石膏法具有吸收率高、不结垢、系统简化、占地较小、设备投资省、运行费用较低、副产品利用价值大等优越点,对火电厂烟气湿法脱硫具有重要参考价值。  相似文献   

3.
结合脱硫净烟气特点,提出分别通过脱硫净烟气中加装氟塑料换热器降温、添加蒸汽、添加冷空气3种措施建立细颗粒物凝结长大所需的过饱和水汽环境,进而增强后续高效除雾器的拦截脱除效果。数值分析了3种措施的可行性,并利用燃煤热态试验平台,对比考察了不同方式促进细颗粒物脱除的效果。结果表明:典型工况下,加装氟塑料换热器、添加蒸汽、添加冷空气三种措施均可使脱硫净烟气中细颗粒物排放浓度降低35%以上;其中,加装氟塑料换热器降温措施对脱硫净烟气原始温度变化的适应性较强,细颗粒物脱除效率基本不随脱硫净烟气原始温度的变化而改变;添加蒸汽方式不适于脱硫净烟气温度较高的场合,且耗能较大;添加冷空气方式在脱硫净烟气温度较高(≥55℃)时效果显著,但所需冷空气的温度较低,存在来源困难等问题。  相似文献   

4.
应用润湿剂促进WFGD系统脱除细颗粒物的性能   总被引:2,自引:2,他引:2       下载免费PDF全文
采用旋流板塔双碱法脱硫工艺,进行了脱硫液中分别添加聚醚硅油、Compound No.3、XHG-248润湿剂促进湿法烟气脱硫(WFGD)系统脱除细颗粒物的试验研究,考察了脱硫液气比、脱硫液温度等对润湿剂作用性能的影响,并进行了协同利用蒸汽相变原理和添加润湿剂促进细颗粒物脱除的试验.结果表明:脱硫液温度对添加润湿剂的作用...  相似文献   

5.
湿法脱硫工艺对汞的脱除性能研究进展   总被引:4,自引:0,他引:4  
结合现有烟气湿法脱硫装置,评述了燃煤烟气中汞的性质以及形态分布和转化机理、湿法烟气脱硫系统(WFGD)的脱汞性能及其影响因素,简要介绍了WFGD 中单质汞的重新排放以及如何抑制;并在此基础上探讨了如何通过提高单质汞的氧化率来提高脱硫液对总汞的脱除效率.  相似文献   

6.
湿法烟气脱硫技术的应用概述   总被引:1,自引:2,他引:1  
分析了湿法烟气脱硫的基本原理、脱硫剂的要求、脱硫的类型、工艺和主要的设备。重点分析了石灰石/石灰—石膏法湿法烟气脱硫技术的应用。  相似文献   

7.
湿法烟气脱硫技术研究现状及进展   总被引:2,自引:0,他引:2  
介绍了国内外已工业应用的主要湿法烟气脱硫技术,如石灰石/石灰-石膏湿法、海水烟气脱硫和微生物法等工艺技术的应用现状及研究发展,并对近年来国内外发展的脱硫新工艺进行了评述。由此探讨了湿法烟气脱硫技术现在存在的问题、研究情况和发展前景。  相似文献   

8.
湿法烟气脱硫工艺中吸收塔传质性能及其强化   总被引:8,自引:0,他引:8  
介绍了湿法烟气脱硫工艺中吸收塔的传质机理、影响因素和设备结构形式,指出吸收塔应从4个方面进行设备传质强化采用高气速、增加气体均布装置、新型的喷嘴设计及排列和对塔内件的设计研究.讨论了强化吸收塔传质性能的措施和途径.  相似文献   

9.
樊凯  吴书杰 《当代化工》2010,39(1):112-114
金山电厂采用了湿法烟气脱硫技术去除烟气中的二氧化硫,但烟气脱硫时会产生废水,采用中和、沉淀、絮凝、澄清等工序,对废水中含有的悬浮物、氟化物和重金属进行处理,沉积的污泥用压滤机脱水。经过对该工艺参数进行调试,处理后的出水符合排放标准。  相似文献   

10.
湿法脱硫技术   总被引:1,自引:0,他引:1  
石灰石/石膏法湿法脱硫法技术,并对有关问题进行了探讨。  相似文献   

11.
王军锋  李金  徐惠斌  刘璐  郑高杰 《化工进展》2019,38(7):3402-3411
石灰石-石膏湿法烟气脱硫(wet flue gas desulfurization,WFGD)工艺具有吸收剂来源广、成本低、脱硫效率高等优点,成为应用最广泛的烟气脱硫工艺。湿法脱硫过程中,燃煤烟气在喷淋浆液的洗涤作用下不仅能高效脱除SO2而且可以协同去除细颗粒物,但同时存在石灰浆液夹带导致出口颗粒物浓度增加的问题。本文首先综述了湿法脱硫的应用现状,对比了湿法脱硫系统前后细颗粒物物性变化,然后概述了应用于湿法脱硫协同去除细颗粒物的新方法,包括脱硫塔内部结构调整以及促进细颗粒物凝聚长大,同时分析了湿法脱硫工艺中采用荷电细水雾吸附细颗粒物并增益脱除SO2的可行性,以期为燃煤电厂细颗粒物排放控制提供借鉴。最后指出未来湿法脱硫技术不仅要实现高脱硫效率,而且能有效脱除未被静电除尘器脱除的细颗粒物,湿法脱硫技术的发展趋势是多种技术耦合实现多污染物的协同脱除。  相似文献   

12.
13.
14.
Removal of fine particles by heterogeneous condensation in the rotating-stream-tray scrubber was investigated experimentally for the double-alkali desulfurization process in this paper. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO2 absorption zone and at the top of the scrubber by adding steam in the gas inlet, between the pieces of rotating-stream-tray and above the desulfurization liquid inlet of the scrubber, respectively. Fine particles grew in size by vapor heterogeneous condensation with the particles acting as nucleation centers. Then the condensational grown droplets were removed efficiently by the desulfurization liquid and a high-efficiency demister. In order to optimize the removal process, the influences of temperature of inlet flue gas and desulfurization liquid, steam addition method and amount of steam added on the particle removal efficiency were presented. The results show that a few fine particles could be removed in the rotating-stream-tray scrubber. The removal efficiency can be significantly improved for various steam addition cases, and the improve performance is related to the method and the amount of steam addition. Particle removal efficiency with steam added between the pieces of rotating-stream-tray is higher than that of else steam addition cases.  相似文献   

15.
洗涤塔脱除燃烧源超细颗粒的实验研究   总被引:2,自引:1,他引:2  
在填料洗涤塔中进行了利用蒸汽相变原理促进燃煤和燃油超细颗粒凝结长大并高效脱除的实验研究;采用电称低压冲击器(ELPI)、SEM及XPS对两种燃烧源细颗粒凝结洗涤前后的数浓度、粒径分布、形貌和元素组分进行了分析测试,考察了洗涤塔进口气液温差、进口烟气含湿量及液气比等对脱除效率的影响。结果表明,燃煤和燃油产生的超细颗粒形貌和组分具有较大的差别,燃煤超细颗粒主要为硅铝矿物质,而燃油超细颗粒主要为含炭物质;在相同条件下,燃煤超细颗粒相变脱除效果优于燃油超细颗粒;脱除效率随洗涤塔进口气液温差的增大而提高,在相同进口气液温差下,增大进口烟气含湿量可显著提高超细颗粒的脱除效率;液气比的影响与填料洗涤塔内是否存在蒸汽相变有关;通过合理调节进口烟气含湿量及进口烟气与洗涤液的温差在填料塔内建立微粒凝结长大所需的过饱和水汽环境可有效脱除燃烧源超细颗粒。  相似文献   

16.
为研究洗涤塔内相变对燃煤超细颗粒的脱除,在洗涤塔液相进口上方注入蒸汽使烟气达到过饱和,由高效除雾器脱除凝并长大的含尘液滴。系统研究了蒸汽添加量、洗涤塔入口气液温差、液气体积比、烟气在相变区域的停留时间等操作参数对燃煤超细颗粒脱除效率的影响规律。结果表明:在塔内添加少量蒸汽,可显著促进燃煤超细颗粒的脱除,蒸汽添加质量浓度为0.03 kg/m3时,数量浓度脱除效率由10%增至60%以上;液气体积比的提高有利于燃煤超细颗粒的脱除,特别是当洗涤塔入口气液温差较大时。研究结果表明利用洗涤塔内相变脱除燃煤细颗粒是一种有应用前景的新方法。  相似文献   

17.
为实现微细颗粒物的有效脱除,采用Mastersizer 2000激光粒度仪和低压撞击器对颗粒物进行粒径分析,研究湿式相变冷凝除尘系统对颗粒物的凝聚、脱除性能;通过数值模拟定性考察颗粒物的凝聚作用,预测湿式相变冷凝除尘技术的除尘效果。结果表明,湿式相变冷凝除尘装置入口颗粒物为峰值2.5μm的单峰分布,中间颗粒物为峰值2和30μm的双峰分布,且大颗粒所占比例高于小颗粒,说明存在显著的颗粒物凝并过程。湿式相变冷凝除尘系统对PM10以下的微细颗粒物有较好的脱除效果,各粒级颗粒物的脱除效率均大于70%,0.1~1μm颗粒物脱除效率在85%以上,明显优于传统除尘设备,表明凝并机制使系统对颗粒物有良好的适应性。流场模拟结果显示管排的存在对流场有明显扰动,可促进微细颗粒物的凝并。  相似文献   

18.
李海英  张春奇  张宇擎  刘东  王锦 《化工进展》2019,38(4):2022-2029
通过激光粒度分析仪(LPSA)对烧结烟气微细颗粒物进行粒度分析,获得烧结过程烟气排放的主要微细颗粒物粒径范围及分布特性。运用扫描电镜-能谱分析仪(SEM-EDS)、X射线衍射仪(XRD)对半干法脱硫前后烧结烟气中的微细颗粒物形貌、元素组成和物相成分进行分析对比。结果发现:脱硫前后的烧结粉尘颗粒特性存在较大差异。在粒径分布上,脱硫前后粒径范围分别为0.816~60.988μm和0.259~407.850μm,脱硫后中位粒径向小粒径偏移;在颗粒形貌上,大烟道中以不光滑球形和不规则颗粒为主,脱硫后以板块状和片状颗粒为主。在元素和物相组成上,大烟道中颗粒中主要元素为Fe、K、Cl,Fe元素以Fe2O3为主,K元素主要以KCl存在,并能观察到明显的立方体KCl颗粒;脱硫后,受脱硫剂影响,颗粒物中主要元素为Ca、O、S,主要以Ca(OH)2、CaSO3和CaSO4为主,同时还含有一定量的石英、氧化镁及一些不定形玻璃相。  相似文献   

19.
付加  祁贵生  刘有智  田建勋  郭强  董梅英 《化工进展》2015,34(3):680-683,694
细颗粒物对环境和人体都会产生较大危害, 传统除尘设备无法高效脱除。超重力旋转填料床复合了多种除尘机制, 除尘效率高, 能耗低。本文采用平均粒径为2.25μm的粉煤灰模拟细颗粒物, 错流旋转填料床为湿式除尘设备, 搭建了中试规模的实验系统。提出了使用激光粒度分析仪测量粉尘粒度分布并计算分级效率的方法, 通过实验考察了转速、液气比和气量对错流旋转填料床分级效率的影响。研究表明, 分级效率随转速、液气比、气量的增大而增大, PM2.5的脱除效率可达到96%, 为超重力湿法除尘的工业化推广提供有力的数据支撑。对分级效率曲线进行拟合, 相关系数R=0.9808。对比发现, 错流旋转填料床的分级效率高于一般湿式除尘器, 对微米级粉尘也有很高的脱除率, 可以高效脱除气体中的细颗粒物, 应用前景广阔。  相似文献   

20.
颜金培  陈立奇  杨林军 《化工学报》2014,65(8):3243-3249
在不同过饱和氛围下,建立了燃煤细颗粒在声波场中团聚长大脱除的实验装置,对细颗粒物在声波场和不同过饱和氛围下的团聚长大脱除特性进行了实验研究。结果表明:细颗粒在声波场中的夹带系数随过饱和度的增大而增加,相应的脱除效率也有所提高;在过饱和度低于1.0时,细颗粒的总脱除效率很低(约为10%),且几乎不随过饱和度的增大而增加,而当过饱和度大于1.0后,细颗粒的脱除效率随过饱和度的增大而迅速提高,过饱和度从1.0增大到1.5,相应的脱除效率提高了近50%。细颗粒的脱除效率随声压级的增大而提高,在过饱和度为0.3时,细颗粒无法发生凝结长大,总脱除效率很低,低于20%。但当过饱和度达到1.2,细颗粒的脱除效率得到了大幅提升,声压级在130dB时,细颗粒的脱除效率达到了70%左右,表明在低声压级的情况下,利用蒸汽相变可有效提高细颗粒在声波场中的团聚脱除效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号