首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
反相高效液相色谱法测定发芽糙米中γ-氨基丁酸的含量   总被引:1,自引:0,他引:1  
建立了一种测定发芽糙米中γ-氨基丁酸含量的反相高效液相色谱法.采用2,4-二硝基氟苯柱前衍生,色谱柱为Wa-tera Sunfire C18,梯度洗脱,检测波长为360 nm.在最适条件下,γ-氨基丁酸的线性检测范围为0.01~0.25 mg/ml,线性关系良好,回收率为99.28%~100.36%.该方法易于操作、稳定、灵敏、准确.用该方法测定发芽前后糙米中GABA的含量,结果显示:糙米中的γ-氨基丁酸由5.01 ms/100 g提高到35.03 mg/100 g.  相似文献   

2.
建立一种简单快速的邻苯二甲醛柱前衍生,紫外检测反相高效液相色谱测定发芽糙米中γ-氨基丁酸含量的方法。色谱柱为Intertsil ODS-C18柱,梯度洗脱,紫外吸收波长为332 nm,线性方程为Y=9.26×106X+2 093.79,r=0.999 5,方法线性范围为0.005~0.06 mg/mL,检出限为2.927 ng,峰面积的相对标准偏差为0.57%,回收率范围为98.85%~100.94%。该方法易于操作、反应时间短、精密度高。用该方法测定了20种发芽糙米中γ-氨基丁酸含量(22.68~88.36 mg/100 g,以干质量计),结果表明,发芽糙米中γ-氨基丁酸含量随品种不同而不同,其中中嘉早17和浙福802明显高于其他品种(P0.05),故在实际生产中可尝试作为发芽糙米副产品的原料。  相似文献   

3.
建立了一种能与17种常见氨基酸分离的发芽糙米中γ-氨基丁酸的检测方法,即采用Hypercarb column色谱柱,以邻苯二甲醛作为衍生试剂进行柱后衍生,检测波长为338 nm,γ-氨基丁酸的定量线性范围为0.2~50 mg/L,线性方程为A=0.304 3C+0.065 3,相关系数R2为0.999 9。确定了发芽糙米中γ-氨基丁酸的提取条件,发芽糙米经20%甲醇-水提取后,用1.0%甲酸稀释,进样检测,回收率可达97.7%。按照上述提取与检测方法,对不同种糙米制品中γ-氨基丁酸含量进行了测定,发芽糙米中γ-氨基丁酸含量明显高于普通糙米,发芽糙米经高温挤压与模拟蒸煮处理后,其γ-氨基丁酸含量均无明显变化。  相似文献   

4.
丹磺酰氯柱前衍生发芽糙米中γ-氨基丁酸的HPLC分析   总被引:1,自引:0,他引:1  
建立一种准确快速的丹磺酰氯(Dansyl-Cl)柱前衍生紫外检测反相高效液相色谱测定发芽糙米中γ-氨基丁酸(GABA)含量的方法。色谱柱为intertsil ODS-C18柱,梯度洗脱,紫外吸收波长为386 nm,线性方程为Y=7358070X+8842.82692,R2=0.9993,方法的线性范围为0.005~0.1mg/mL,检出限为3.461 ng,峰面积的RSD为1.51%,回收率范围为98.62%~101.29%。该方法易于操作,回收率和精密度高。用该方法测定了20种发芽糙米中GABA含量[22.68~88.36 mg/100g(干重)],结果表明发芽糙米中GABA含量随品种不同而异,其中中嘉早17、浙福802明显高于其他品种,故在实际生产中可尝试作为发芽糙米副产品的原料。  相似文献   

5.
应用HPLC法和Berthelot比色法对发芽糙米中γ-氨基丁酸含量的测定效果进行对比研究.分别建立了2种γ-氨基丁酸的定量测定方法,利用Berthelot比色法以及HPLC与柱前衍生相结合的方式,对发芽糙米中γ-氨基丁酸含量进行测定.结果表明,HPLC法分离度和重复性好,精密度高,结果准确,适用于发芽糙米中γ-氨基丁酸含量的痕量分析;Berthelot比色法操作简单快速,适用于大批量样品中γ-氨基丁酸含量的测定.  相似文献   

6.
发芽糙米中γ-氨基丁酸的HPLC分析方法   总被引:1,自引:0,他引:1  
以2,4-二硝基氟苯为衍生试剂,以0.05mol/L乙酸钠缓冲液(pH6.5,含10mLN,N-二甲基甲酰胺)和50%乙腈为流动相,建立了发芽糙米中γ-氨基丁酸含量的高效液相色谱分析方法,色谱柱为SB-C18,梯度洗脱,紫外检测波长为360nm。γ-氨基丁酸的线性范围在10~250mg/L,峰面积与浓度之间线性关系良好,线性方程为Y=225.53095X-0.660345,R2=0.99956,RSD为0.28%,加标回收率为94.4%~98.2%。该方法操作步骤简单,所用试剂价格低,稳定、准确。  相似文献   

7.
储藏期对发芽糙米富集γ-氨基丁酸的影响   总被引:2,自引:2,他引:0  
以早籼稻品种"早944"为对象,测定储藏0~27个月期间,其糙米发芽率、发芽72 h时谷氨酸脱羧酶活力及γ-氨基丁酸的变化,以研究原料储藏期对发芽糙米富集γ-氨基丁酸的影响。结果表明,随着储藏期的延长,发芽率、谷氨酸脱羧酶活力及γ-氨基丁酸含量下降显著(P<0.05),且下降速率加快。糙米发芽率月平均下降速率为2.03%,谷氨酸脱羧酶月平均失活速率为0.09 U/100 g,γ-氨基丁酸含量月平均下降速率为1.10 mg/100 g。经相关性分析,发芽糙米中谷氨酸脱羧酶活力与γ-氨基丁酸含量呈极显著正相关(r=0.969 5,P<0.01)。  相似文献   

8.
利用响应面分析法优化糙米发芽富集γ-氨基丁酸的工艺参数,分析得出最佳条件下糙米发芽富集γ-氨基丁酸的含量。糙米发芽是糙米富集γ-氨基丁酸的一种形式,通过单因素试验确定出糙米发芽的发芽率,利用纸层析法测量,测量γ-氨基丁酸的含量。最佳的富集条件是:浸泡温度为30℃,浸泡时间为24 h,发芽温度30℃,发芽时间为28 h。  相似文献   

9.
本文采用紫外-可见光分光光度法快速测定富硒发芽糙米中γ-氨基丁酸的含量。所制定的标准曲线R2=0.9991;精密度试验RSD=0.68%,测定值之间无显著性差异(P〉95%);回收率试验得到平均回收率为97.68%。说明结果重现性好,精密度较高,所得数据精确,该方法适合于富硒发芽糙米中γ-氨基丁酸定量分析。  相似文献   

10.
温度和时间对发芽糙米中γ-氨基丁酸含量的影响   总被引:5,自引:0,他引:5  
以福建省农科院水稻所提供的籼稻"繁71-49"为原料,对发芽糙米的生产工艺进行研究.研究了浸泡温度、浸泡时间、发芽温度和发芽时间等因素对吸水率、发芽率和γ-氨基丁酸含量的影响.结果表明,吸水率和发芽率与浸泡温度和时间有关,吸水率影响发芽率,发芽时间对发芽糙米的γ-氨基丁酸含量产生影响;制备高含量γ-氨基丁酸的最适宜条件是:浸泡温度30℃、浸泡时间24 h、发芽温度30℃、发芽时间28 h;采用该工艺,发芽后糙米中γ-氨基丁酸含量是未发芽糙米的2.3倍,是精白米的7.6倍.  相似文献   

11.
以糙米为原料,研究了浸泡温度、浸泡时间、发芽温度、发芽时间对糙米发芽中γ-氨基丁酸含量的影响。通过单因素与正交试验设计确定了糙米发芽富集γ-氨基丁酸的最佳工艺条件,结果表明,当浸泡温度为35℃、浸泡时间为12 h、发芽温度为32℃、发芽时间为18 h时,发芽糙米中γ-氨基丁酸的含量最高达到了105.21 mg/100 g,是发芽前的3倍多,此时的发芽率达到了92%。糙米经发芽后蛋白质、脂肪、还原糖、抗坏血酸、γ-氨基丁酸量均有不同程度的提高,抗营养因子植酸的含量有大幅度的降低。  相似文献   

12.
以富硒富γ-氨基丁酸发芽糙米为原料研制饼干。通过单因素试验探讨了富硒富γ-氨基丁酸发芽糙米、白砂糖、黄油添加量对饼干感官品质的影响,采用Design-Expert中的响应面法对配方进行优化。结果表明,以小麦粉和发芽糙米粉组成的混合粉质量为100%计,富硒富γ-氨基丁酸发芽糙米添加量为57%、白砂糖为26%、黄油为40%时,饼干的感官品质最好,其理化指标符合GB/T 20980—2007要求;饼干中的硒含量为0.38 mg/(100 g),γ-氨基丁酸含量为23.40 mg/(100 g)。三因素对饼干感官品质影响的大小顺序为:发芽糙米、白砂糖、黄油。  相似文献   

13.
糙米发芽工艺优化研究   总被引:2,自引:0,他引:2  
选取发芽温度、发芽时间、氯化钙溶液浓度3个因素利用minitab软件进行Box-Bohnken设计及响应面分析,以发芽糙米的γ-氨基丁酸含量为考察指标,对糙米发芽条件进行优化.最终确定糙米发芽的最佳条件为:发芽温度37.5℃,发芽时间28 h,氯化钙溶液浓度0.5%,在此条件下糙米的γ-氨基丁酸含量可达到94.6mg/100g.  相似文献   

14.
采用单因素和正交试验,以发芽糙米的发芽率、吸水率以及γ-氨基丁酸为评价指标,确定了鲜稻谷发芽糙米最优的发芽工艺:浸泡时间为18h、浸泡温度为33~35℃、发芽时间为18h、发芽温度为30℃,正交试验中发芽糙米中γ-氨基丁酸含量最高的可达701mg/kg,是未发芽糙米(30.6mg/kg)的22.9倍。  相似文献   

15.
为获得高含量γ-氨基丁酸生产工艺条件,探讨了浸泡时间、培养时间、发芽温度对糙米发芽中γ-氨基丁酸含量的影响应用响应面分析法优化糙米发芽工艺条件,实验结果表明,高含量γ-氨基丁酸生产的最佳条件是:浸泡时间9.3h,发芽时间14.3h,发芽温度27℃,此条件下γ-氨基丁酸含量为232.8mg/100g.  相似文献   

16.
《食品工业科技》2013,(06):289-292
为获得高含量γ-氨基丁酸生产工艺条件,探讨了浸泡时间、培养时间、发芽温度对糙米发芽中γ-氨基丁酸含量的影响。应用响应面分析法优化糙米发芽工艺条件,实验结果表明,高含量γ-氨基丁酸生产的最佳条件是:浸泡时间9.3h,发芽时间14.3h,发芽温度27℃,此条件下γ-氨基丁酸含量为232.8mg/100g。   相似文献   

17.
以脉冲强光光照强度、照射次数、照射距离为响应因素进行单因素试验,在单因素试验的基础上以灭菌率、γ-氨基丁酸富集量为响应值,采用响应面双响应值联合分析法优化发芽糙米脉冲强光杀菌耦合γ-氨基丁酸富集工艺,最后得出发芽糙米脉冲强光杀菌耦合γ-氨基丁酸富集最优工艺为:光照强度0.45kJ,照射次数395次,照射距离9.0cm,在此条件下发芽糙米灭菌率为91.15%,发芽糙米γ-氨基丁酸含量为170.10mg/100g,分别达到了预测值的99.86%与98.55%,试验实测值与预测值接近。  相似文献   

18.
发芽糙米中γ-氨基丁酸的富集与测定   总被引:1,自引:0,他引:1  
糙米是一颗完整、有生命活力的种子.发芽可以改变糙米的化学成分.与糙米相比,发芽糙米中的必需氨基酸及生理活性物质种类更多、含量更高,其中γ-氨基丁酸提高率最大.γ-氨基丁酸是一种天然存在的功能性氨基酸,是由谷氨酸经谷氨酸脱羧酶作用生成.概述了γ-氨基丁酸的生理功能及其在糙米中的富集与测定方法,并对糙米发芽条件的优化进行了...  相似文献   

19.
采用不同蒸煮时间对发芽糙米进行处理,探索不同蒸煮时间对发芽糙米中生理活性物质的影响情况,结果表明:在不同的蒸煮时间下,发芽糙米中γ-氨基丁酸含量均有所增加、而植酸含量、谷维素含量均降低;其中,蒸煮20 min时,发芽糙米γ-氨基丁酸含量增加幅度最大,增加了66.31%;谷维素含量损失最小,降低了25.06%;植酸含量降低了17.11%;由于四种蒸煮条件对植酸含量变化影响均较小,因此,总体来看,蒸煮20 min对发芽糙米中生理活性物质的综合保留效果相对较好。  相似文献   

20.
通过对衍生试剂浓度、衍生时间、衍生温度、检测波长、流动相比例与柱温条件的选择,建立了一种高效液相色谱(HPLC)法灵敏检测发酵液中γ-氨基丁酸(GABA)含量的方法。以邻苯二甲醛为衍生化试剂,衍生时间5 min,衍生温度为室温,色谱条件为:检测波长228 nm,流动相为乙腈-20 mmol/L结晶乙酸钠溶液(21∶79,V/V),柱温30℃,流速0.8 m L/min。结果表明,在γ-氨基丁酸含量0.05μg/m L~0.50 mg/m L范围内线性关系良好(相关系数R2=0.999 4),平均加标回收率为91.87%~105.58%,精密度试验结果相对标准偏差(RSD)为0.55%~3.74%(n=5),检出限为0.02μg/m L。采用该方法检测发酵液中γ-氨基丁酸含量,其含量范围在0.157~0.369 mg/m L之间。该方法操作简单、灵敏、准确可靠,适用于发酵液中γ-氨基丁酸含量的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号