首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
对锅炉受热面积灰程度的有效预测,可为锅炉提升生产效率和故障预警提供重要依据。 采用清洁因子来评估受热面的 灰污沉积状况,针对其序列非线性、非平稳性的特点,提出一种基于互补集合经验模态分解与时间卷积网络的受热面积灰预测 方法。 首先,通过互补集合经验模态分解将经过小波阈值去噪处理后的原始序列分解为一组子序列分量;然后,针对不同子序 列分别构建基于时间卷积网络的时序预测模型,并优化网络超参数提升预测准确性;最后,将各 IMF 分量的预测结果叠加得出 清洁因子的预测数值。 由实验结果可得,相较于其他两种模型,预测精度分别提高 62. 1%和 57. 1%,CEEMD-TCN 模型对受热 面积灰状况预测精度最高,验证了该模型的准确性和可靠性。  相似文献   

2.
为了快速、实时、准确地分离由非接触人体生理信号监测系统所采集到的信号,将快速互补集合经验模态分解(fast complementary ensemble empirical mode decomposition,FCEEMD)引入到人体生理信号处理领域,在原始信号中成对添加符号相反的白噪声信号,并对其进行经验模态分解(EMD),获得有限个固有模态函数(IMFs)进而实现原始信号的分离,使用固定筛分次数停止准则以保证该算法的快速实时性;仿真算例和实际实验都表明,该算法可有效解决模态混叠,快速获得准确的心跳信号和呼吸信号。  相似文献   

3.
针对现有时频分析方法处理非线性、非稳态信号自适应性的不足,提出了一种自适应互补集总经验模态分解(ACEEMD)方法。该方法通过对加噪辅助分解方法噪声准则的研究,引入相关均方根误差与信噪比两个参数作为加噪评价指标,自适应确定最优加噪幅值和集总分解次数。且加入的噪声以正负成对的形式加到目标信号中,克服了原始分解方法存在的模态混叠问题、端点效应以及残余噪声大的缺点。最后将改进的方法与Hilbert变换相结合运用在电能质量扰动检测中,通过仿真实验验证所提方法既可以有效提取扰动的频率、幅值等特征参数,也可以准确定位扰动的时间,为电能质量检测与分析提供了一种新思路。  相似文献   

4.
5.
风电场风速预测对电力系统的合理调度、安全运行等方面有重大的影响。针对风速时间序列的非线性特征造成其预测精度不佳的问题,采用基于互补型集成经验模态分解和灰狼优化算法优化支持向量回归机的超短期风速组合预测模型来解决。首先利用该模型对非平稳的风速时间序列进行CEEMD分解,分解为一系列的相对平稳分量。然后对各个分量利用灰狼算法优化SVR进行预测。最后,将每一个分量的预测结果集成输出作为最终的风速预测结果。结果表明,该预测模型比其他智能算法基准模型预测精度高,且在风速预测中具有优越性。  相似文献   

6.
针对行波法测距精度受波速、行波波头标定的精度以及噪声的影响,提出一种基于小波阈值去噪和CEEMD-HT结合的混合三端直流输电线路测距方法。首先利用小波阈值去噪对故障信号滤噪,然后对滤噪后的信号使用互补集合经验模态分解和希尔伯特变换标定初始波头的到达时间。再根据故障行波到达测量端时间比值识别故障支路。最后考虑到行波波速难以精确确定,基于已知线路长度和初始波头到达时间,提出一种不受波速影响的测距方法。仿真结果表明,所提方法能够有效标定波头,且测距结果不受波速、故障距离、故障类型、过渡电阻及噪声的影响。与利用波速计算的双端法、HHT及小波包测距算法相比,该方法的测距误差更小。  相似文献   

7.
为提高预测的可靠性和准确性,提出一个基于模态分解理论和膜计算优化算法的混合模型用于风速预测。与现有的风速预测方法相比,该模型提高了预测精度。该模型包括3个主要步骤:为了简化数据的复杂度,通过互补集合经验模式分解(CEEMD)将原始风电功率时间序列分解成几个固有模态函数(IMFs);对每个IMF分量单独建立膜计算优化算法优化支持向量机(MCO-SVR)的模型进行预测;叠加全部IMF分量的预测值作为最终的预测结果。建立包括单一的支持向量回归机模型、不同分解方法以及相同的分解方法但使用不同的优化算法在内的9种基本模型,来验证所提出的混合模型的优越性。实证研究表明,所提出的混合模型在预测精度上显著优于其他的基本模型。  相似文献   

8.
传统负荷预测未深入考虑负荷序列对模型预测精度的影响。为提高预测精度,提出了多负荷特征组合(multi-load feature combination, MLFC),并结合时间卷积网络(temporal convolution network,TCN)和门控循环单元(gated recurrent unit,GRU)构建了负荷预测框架。首先,引入负荷变化率特征和基于集合经验模态分解的负荷分量特征,并与负荷、日期特征构成MLFC;其次,选取TCN和GRU进行特征提取和预测,基于MLFC搭建MLFC-TCN-GRU预测框架;最后,采用不同模型验证所提方法。结果表明:MLFC有助于预测精度提升,且适用于不同模型。同时,MLFC-TCN-GRU相较于其他模型有着较高预测精度。  相似文献   

9.
针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,本文提出了一种基于添加互补白噪声的互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)以及门控循环单元神经网络(gated recurrent unit neural network, GRU)融合的预测方法。首先,针对传统经验模态分解(empirical mode decomposition, EMD)分解方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD分解方法,加入互补白噪声,将原始序列分解成不同尺度的子序列,随后使用GRU神经网络,并优化网络超参数,从而获得最好的预测结果。通过实验证明,该方法重构误差小,预测效果好。  相似文献   

10.
为了快速获取人体脉搏信号完整特征信息,并快速准确识别脉搏特征信息与人体疾病关联表征。研究采用多周期脉搏时域特征和基于集合模态经验分解(Ensemble Empirical Mode Decomposition EEMD)的希伯尔特黄变换(Hilbert-Huang-Transform HHT)获取瞬时频率及幅值作为频域特征,把时域及频域特征进行融合作为卷积神经网络的输入进行人体脉搏特征的识别及分类。从MIT-BIH 标准数据库中获取到三种临床症状的脉搏信号进行了实验分析,最后经过实验得到脉搏特征识别及分类准确率为91.88%。采用基于EEMD的HHT作为时域特征的补充,时频特征混合能够使得PPG脉搏信号完整的表征,并在卷积神经网络上进行分类实验,得到较好的分类效果。研究方法愿为临床诊断智能化发展、提高临床诊断的准确率及效率提供良好的促进作用。  相似文献   

11.
为消除基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)的谐波检测法易受到迭代次数与辅助白噪声的干扰而产生虚假分量与模态混叠等问题,以及CEEMD方法在检测噪声背景下的谐波信号精度不高的缺陷,提出一种基于排列熵(Permutation Entropy,PE)算法与CEEMD相结合的PE-CEEMD谐波检测方法。首先对谐波信号进行互补集合经验模态分解,得到若干频率由高到低排列的固有模态函数(Intrinsic Mode-Function,IMF),利用排列熵算法快速选定随机性较大的噪声分量进行剔除,对剩余信号再进行CEEMD分解。仿真实验数据表明,相较于CEEMD方法,PE-CEEMD方法能够较好地克服模态混叠与虚假分量等问题,并且针对复杂谐波信号的各次谐波频率成分与幅值的检测精度分别提高了4.424%与9.3%。  相似文献   

12.
变压器声纹信号包含大量反映内部机械状态的有效信息。为实现变压器内部机械状态不停电检测,提出一种基于特征筛选和改进深度森林的变压器机械状态声纹识别方法。首先,利用自适应噪声完备集合经验模态分解(CEEMDAN)声纹信号得到本征模态函数(IMF),并通过频谱分析和皮尔逊相关系数对IMF分量进行筛选,得到包含故障信息的IMF分量。其次,利用各IMF分量在频段上的分布情况进行高、低频段划分,依据高、低频段IMF分量的差异性,将高频段IMF分量的时频能量和低频段IMF分量的幅值特性作为特征指标,构成特征向量,输入改进后的深度森林模型,得到10种机械松动状态的声纹识别结果。最后,通过现场试验验证了该方法的有效性。研究结果表明:所提方法对10种机械松动状态的平均识别准确率达99.2%。与传统变压器声纹特征相比,所提声纹特征区分度更高;与传统识别模型相比,所提改进深度森林识别模型复杂度更低,训练速度更快,识别准确率更高。  相似文献   

13.
为克服经验模态分解(EMD)去噪方法存在的模态混叠以及噪声分量与信号分量区分困难问题,本文提出了一种基于二次互补集合经验模态分解(CEEMD)与时域特征分析的去噪方法。该方法利用CEEMD来克服模态混叠问题,同时基于对CEEMD本征模态函数(IMF)的时域特征分析来确定噪声主导IMF分量与信号主导IMF分量的分界点,据此区分噪声分量与信号分量,并对分界点相邻两侧的噪声主导IMF分量与信号主导IMF分量进行二次CEEMD分解,在保留更多有用信号的同时进一步滤除剩余噪声。对含冲击噪声干扰的实际机载平台数据的去噪实验结果表明,新方法通过对噪声分量与信号分量的有效分离,可以更好地抑制噪声干扰,明显提升信噪比。  相似文献   

14.
随着电网规模的扩张以及二次技术的发展,二次屏柜的压板数量急剧上升。二次压板一旦出现保护误动或拒动,将严重威胁到电网、设备与人身安全。设计了一种基于改进图像检索算法的继电保护压板状态识别系统对压板退投状态进行识别。首先,对压板图像利用背景差分法及光流法进行前景提取;然后,采用图片增强处理、边缘检测等一系列技术识别开关的投退状态;最后,再将获得的开关状态与系统数据库对比,生成可视化报表,由此判断出压板状态是否正确。提出的方法能够快速识别压板状态正确与否,具有较高识别率,极大缩减了二次操作后核查及日常巡视的时间。  相似文献   

15.
针对传统经验模式分解(EMD)方法存在的模式混淆问题,以及总体平均经验模式分解(EEMD)不具备完备性和计算量太大的缺陷,提出一种改进的自适应互补集合经验模式分解(CEEMD)方法。该方法在分析加噪准则的基础上,引入峰值误差(PE)作为加噪评价指标,来自适应确定最佳加噪幅值;然后利用原始信号的幅值标准差以及加入噪声的幅值标准差的比值系数,对不同信号自适应获取总体平均次数;最后将该方法运用到由美国麻省理工学院建立的MIT-BIH心电数据库中,很好地实现了对目标信号的去噪。实验表明,所提方法的平均信噪比(SNR)达到了19.249 7、均方根误差(RMSE)仅为0.047 3,平均平滑度指标R只有0.030 5。算法有效地去除了原始心电信号噪声,改善了信号的平滑度,提高了运算效率。  相似文献   

16.
针对复杂电网环境下电能质量扰动特征冗余、分类精度低的问题,经过多层卷积神经网络逐层获取电能质量扰动信号低维到高维特征信息,引入特征注意力机制构建多特征融合层消除特征冗余,提升扰动信号关键特征关注度,并加强扰动信号的局部特征与全局特征的提取,提高模型泛化能力进而提高扰动分类精度,据此提出基于多特征融合注意力网络的电能质量扰动识别方法。仿真结果显示,所提方法不仅在单一扰动、复合扰动下能有效辨识电能质量扰动,而且能有效克服噪声干扰对模型的影响,相比主流扰动分类方法提取的特征辨识度更高、模型抗噪性更强。  相似文献   

17.
王桥梅    吴浩    杨杰    李栋    刘益岑 《陕西电力》2021,(5):93-100
针对HVDC输电线路故障识别率低,远端高阻故障识别困难等问题,提出基于Teager能量算子和1D-CNN的HVDC输电线路故障识别方法。该方法利用保护安装处测得的线模分量Teager能量算子和输电线路两侧正负极电流突变量能量比值组成特征向量,利用1D-CNN对特征向量集进行训练和测试,同时实现区内外故障判和故障极选择。仿真实验表明该方法能在不同故障距离和不同过渡电阻情况下有效实现区内外故障识别和故障极选择,采样率能满足现有实际工程需要,具有较强的耐受过渡电阻能力。  相似文献   

18.
针对现有局部放电(PD)信号特征提取方法存在的不足,提出一种基于变分模态分解(VMD)和Hilbert变换(Hilbert-VMD)的特征提取方法,并提出一种双阈值筛选法来确定VMD算法中的分解模态数。首先,根据PD信号功率谱,采用双阈值筛选法确定VMD算法中的分解模态数;其次,采用VMD算法对PD信号进行分解,得到数个有限带宽的固有模态分量(BLIMFs);然后,对各模态分量进行Hilbert变换并线性叠加后得到PD信号的Hilbert时频谱,并计算各模态分量的边际谱;最后,根据各模态分量的边际谱提取PD信号频域内的特征量,并用支持向量机(SVM)对所提取的特征量进行分类。实验结果表明,对试验环境下和现场实测两种环境下的PD信号,采用该文方法提取得到的特征量均具有较高的正确识别率,充分说明该特征提取方法可以有效提取PD信号特征。对于噪声较大的实测信号,采用该方法得到的正确识别率并未明显降低,说明该方法具有较好的噪声鲁棒性。此外,该文所提Hilbert-VMD方法也为PD信号提供了一种新的时频分析方法。  相似文献   

19.
为提高在噪声环境下电能质量扰动检测定位的准确性,提出基于改进小波阈值函数和完备总体经验模态分解(CEEMD)的电能质量扰动检测算法。在采用CEEMD处理电能质量扰动信号的基础上,通过排列熵计算各固有模态函数的随机噪声强度,利用小波改进阈值函数对噪声强度高于排列熵值的分量降噪,并对降噪后分量进行Hilbert-Huang变换,求取定位扰动起止点以及频率等参数。将该算法与CEEMD舍弃高频分量和小波阈值函数降噪方法的对比分析,结果表明算法不仅具有较强的抗噪性,而且能有效保留高频信息不被滤除。以PSCAD/EMTC双馈式风力发电系统中的单相短路和两相短路为例,仿真验证了所提算法的有效性,最后搭建了基于PXI和Lab VIEW平台电能质量扰动检测平台,为应用于工程实践中奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号