首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Higher plant terpenoids: A phytocentric overview of their ecological roles   总被引:31,自引:0,他引:31  
Characteristics of higher plant terpenoids that result in mediation of numerous kinds of ecological interactions are discussed as a framework for this Symposium on Chemical Ecology of Terpenoids. However, the role of terpenoid mixtures, either constitutive or induced, their intraspecific qualitative and quantitative compositional variation, and their dosage-dependent effects are emphasized in subsequent discussions. It is suggested that little previous attention to these characteristics may have contributed to terpenoids having been misrepresented in some chemical defense theories. Selected phytocentric examples of terpenoid interactions are presented: (1) defense against generalist and specialist insect and mammalian herbivores, (2) defense against insect-vectored fungi and potentially pathogenic endophytic fungi, (3) attraction of entomophages and pollinators, (4) allelopathic effects that inhibit seed germination and soil bacteria, and (5) interaction with reactive troposphere gases. The results are integrated by discussing how these terpenoids may be contributing factors in determining some properties of terrestrial plant communities and ecosystems. A terrestrial phytocentric approach is necessitated due to the magnitude and scope of terpenoid interactions. This presentation has a more broadly based ecological perspective than the several excellent recent reviews of the ecological chemistry of terpenoids.  相似文献   

2.
Tetramethylene-1,4-bis(N,N-dodecylammonium bromide), cationic gemini surfactant, (12-4-12) was first synthesized with an one-step and shortened procedure and its interfacial and antimicrobial properties were compared with a conventional single-chain cationic surfactant, cetyltrimethylammonium bromide (CTAB). The interfacial and thermodynamic properties of both surfactants reveal that critical micelle concentration (CMC) of this novel synthetic cationic dimeric surfactant is lower than that of cationic monomeric surfactant at almost 15 times of its magnitude, which is due to the increase in hydrophobicity of the surfactant molecules by having dual hydrocarbon chains. In comparison with CTAB, the produced compound 12-4-12 yields much better interfacial and thermodynamic properties. The antimicrobial activities of the synthesized gemini surfactant were tested against eight strains of bacteria, as well as two strains of fungi. The results showed that both 12-4-12 compound and CTAB exhibited higher inhibitory effects on the growth of Gram-positive bacteria and fungi than that of Gram-negative bacteria. The minimum inhibitory concentrations in molar of 12-4-12 against all tested Gram-negative bacteria were lower than those of CTAB, which is hypothetically due to the lower HLB together with smaller CMC values of our gemini surfactant.  相似文献   

3.
The Andersen sampler was used to study the occurrence of bacteria and fungi in the working air of two large, intensively used landfills in Finland. Endotoxins were also determined. The concentrations of airborne microbes were high in summer in warm windy weather. Mesophilic bacteria exceeded 105 colony-forming units (cfu)/m3 and mesophilic fungi 104 cfu/m3. In 67% of the samples, the concentrations of gram-negative bacteria exceeded 103/m3, which has been suggested to be the threshold limit value (TLV). The endotoxin levels were all below 0.1 μg/m3. A large part of the colony-forming particles were within the respirable size range, about 40% of the bacteria and about 80% of the fungi. The commonly isolated airborne bacteria were Pseudomonas, Enterobacter, and Bacillus spp. The landfill workers should try to work upwind. There are also grounds for using a mask and irrigating the refuse terrace with leachate in dry weather. It is suggested that the traffic on the refuse terrace be decreased by arranging for the private cars to be emptied in the reception area.  相似文献   

4.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is a major concern in the environment due to their toxic nature and ubiquitous occurrence. PAHs remain sorbed to soil organics and interact with non-aqueous phases and therefore, become less available for degradation. Several microorganisms like bacteria, fungi, and algae have the capability to degrade soil-sorbed PAHs using different metabolic pathways. The focus of this review is microbial degradation of high molecular weight PAH pyrene by pure and mixed culture, including biological aspects of biosurfactants produced during the process for increasing the bioavailability of soil-sorbed or non-aqueous phase pyrene. High molecular weight PAHs are generally recalcitrant to microbial attack, although some bacteria, fungi, and algae are capable of transforming these compounds by using them as the sole source of carbon and energy. Also, the use of microbial consortium has been found to be more efficient and better from an economic point of view for degradation due to synergistic interactions among microbial species. The review also explains the role of catabolic genes involved in the degradation of pyrene.  相似文献   

5.
The Tilemsi phosphate rock (TPR) of Mali is a good and cheaper alternative to imported phosphate fertilizers. Many soil microorganisms can also mobilize sparingly soluble inorganic phosphates, and several have a good potential to improve plant growth. With the aim of improving the response of wheat cultivated in Mali to fertilization with TPR, in this work we describe the isolation and selection from four different Malian soils of TPR-solubilizing microorganisms (TSM) with high P-mobilization activities. When the rhizosphere of three wheat cultivars (Alkama Beri, Hindi Tossom and Tetra) was used to isolate TSM, only bacterial isolates were selected. TPR-solubilizing fungi were only obtained by soil enrichment in liquid medium containing TPR as sole P source. In the rhizosphere a significant correlation was observed between the total microbial population and the number of microorganisms solubilizing TPR. No such correlation was observed in the rhizoplane. Initially 44 bacteria and 18 fungi were selected, but after 10 subcultures on agar plates and a liquid medium, only 6 bacteria and 2 fungi retained their high P solubilizing trait. A field inoculation trial was established during the growing season 2000–2001 in Koygour. Wheat cv. Tetra was inoculated with the 8 selected TSM (6 bacteria and 2 fungi) and fertilized with 30 kg ha−1 P added as TPR or diammonium phosphate (DAP). The growth parameters measured were plant height at 30 and 60 days, the number of leaves per main stem at 60 days, and root and shoot dry matter yields 60 days after planting. Root colonization by indigenous arbuscular mycorrhizas (AM) was also measured in 45-day-old plants. Significant interactions were observed between TSM inoculation and P-fertilization for root colonization with AM, plant height at 30 days and root dry matter yield. The bacterial isolate Pseudomonas sp. BR2, which appeared to be a mycorrhiza helper bacterium, significantly enhanced wheat seedling emergence very early (5 days after planting) under field condition, and caused 128% increase in root dry matter yield. The two TPR-solubilizing fungal isolates Aspergillus awamori Nakazawa C1 and Penicillium chrysogenum Thom C13 also caused respectively 60 and 44% increases in root dry matter yields. The choice of the TSM BR2, C1 and C13 for further field trials is discussed.  相似文献   

6.
植物系统获得抗性激活剂筛选方法探讨   总被引:4,自引:0,他引:4  
倪长春  沈宙 《现代农药》2004,3(1):10-14
在植物系统获得抗性(SAR)激活剂筛选中,可采用离体测定和活体盆栽测定相结合的方法进行。在离体测定时,不同植物病原细菌和病原真菌,用平板稀释法测定药物对病原物的抑菌活体;活体盆栽测定可在待测试作物水稻、黄瓜、玉米、番茄等作物上叶面喷雾药液,并于喷药当天及3 d、1周、2周后接种植物病原细菌、真菌和病毒,置适宜条件下培养至空白对照明显发病,考察药物对各病害的防治效果。通过离体活性与盆栽效果综合分析,若无离体活性或离体活性较弱,但盆栽药效持久且有广谱效果的药物,即有可能具有SAR激活剂作用。  相似文献   

7.
Antimicrobial peptides (AMPs) possess great potential for combating drug-resistant bacteria. Thanatin is a pathogen-inducible single-disulfide-bond-containing β-hairpin AMP which was first isolated from the insect Podisus maculiventris. The 21-residue-long thanatin displays broad-spectrum activity against both Gram-negative and Gram-positive bacteria as well as against various species of fungi. Remarkably, thanatin was found to be highly potent in inhibiting the growth of bacteria and fungi at considerably low concentrations. Although thanatin was isolated around 25 years ago, only recently has there been a pronounced interest in understanding its mode of action and activity against drug-resistant bacteria. In this review, multiple modes of action of thanatin in killing bacteria and in vivo activity, therapeutic potential are discussed. This promising AMP requires further research for the development of novel molecules for the treatment of infections caused by drug resistant pathogens.  相似文献   

8.
从32种不同产地、不同种类的腐植酸原料中分离微生物,以验证腐植酸原料中是否存在微生物;如果存在,则对其进行菌种鉴定。目前,关于腐植酸中存在微生物的研究鲜有报道。但是腐植酸中可能会存在一些有益的微生物,对其进行研究,可以为以后研究腐植酸与微生物两者之间的相互作用及应用奠定基础。试验结果表明,腐植酸原料中(除上海生化腐植酸外)存在细菌、放线菌、真菌,并且不同腐植酸中微生物的种类、数量不同,但优势菌大致相同;从中分离得到细菌优势菌8株、放线菌优势菌4株、真菌优势菌5株,通过菌落形态、菌体形态以及生理生化特征等方面鉴定各菌种。鉴定结果明确,它们属于短小杆菌属(Curtobacte-rium Yamada etc.,1972)、芽孢杆菌属的短小芽孢杆菌(B.pumilus)、灰褐类群阿拉伯链霉菌(S.arabicus Shibata etc.,1957)等。  相似文献   

9.
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.  相似文献   

10.
Beneficial bacteria that live on salamander skins have the ability to inhibit pathogenic fungi. Our study aimed to identify the specific chemical agent(s) of this process and asked if any of the antifungal compounds known to operate in analogous plant–bacteria–fungi systems were present. Crude extracts of bacteria isolated from salamander skin were exposed to HPLC, UV-Vis, GC-MS, and HR-MS analyses. These investigations show that 2,4-diacetylphloroglucinol is produced by the bacteria isolate Lysobacter gummosus (AB161361), which was found on the red-backed salamander, Plethodon cinereus. Furthermore, exposure of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (isolate JEL 215), to different concentrations of 2,4-diacetylphloroglucinol resulted in an IC50 value of 8.73 μM, comparable to crude extract concentrations. This study is the first to show that an epibiotic bacterium on an amphibian species produces a chemical that inhibits pathogenic fungi.  相似文献   

11.
The action of proteases can be controlled by several mechanisms, including regulation through gene expression; post-translational modifications, such as glycosylation; zymogen activation; targeting specific compartments, such as lysosomes and mitochondria; and blocking proteolysis using endogenous inhibitors. Protease inhibitors are important molecules to be explored for the control of proteolytic processes in organisms because of their ability to act on several proteases. In this context, plants synthesize numerous proteins that contribute to protection against attacks by microorganisms (fungi and bacteria) and/or invertebrates (insects and nematodes) through the inhibition of proteases in these organisms. These proteins are widely distributed in the plant kingdom, and are present in higher concentrations in legume seeds (compared to other organs and other botanical families), motivating studies on their inhibitory effects in various organisms, including humans. In most cases, the biological roles of these proteins have been assigned based mostly on their in vitro action, as is the case with enzyme inhibitors. This review highlights the structural evolution, function, and wide variety of effects of plant Kunitz protease inhibitors, and their potential for pharmaceutical application based on their interactions with different proteases.  相似文献   

12.
Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.  相似文献   

13.
Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen exposure with a specific, self-limited response. In severe asthma and/or CRS, genome–environmental interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions, single or combined type 1, 2, and 3 immunological response pathways are invoked, generating cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths, and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2 cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways, resulting in less inflammation and improved disease control.  相似文献   

14.
Trehalose Metabolism: From Osmoprotection to Signaling   总被引:1,自引:0,他引:1  
Trehalose is a non-reducing disaccharide formed by two glucose molecules. It is widely distributed in Nature and has been isolated from certain species of bacteria, fungi, invertebrates and plants, which are capable of surviving in a dehydrated state for months or years and subsequently being revived after a few hours of being in contact with water. This disaccharide has many biotechnological applications, as its physicochemical properties allow it to be used to preserve foods, enzymes, vaccines, cells etc., in a dehydrated state at room temperature. One of the most striking findings a decade ago was the discovery of the genes involved in trehalose biosynthesis, present in a great number of organisms that do not accumulate trehalose to significant levels. In plants, this disaccharide has diverse functions and plays an essential role in various stages of development, for example in the formation of the embryo and in flowering. Trehalose also appears to be involved in the regulation of carbon metabolism and photosynthesis. Recently it has been discovered that this sugar plays an important role in plant-microorganism interactions.  相似文献   

15.
The Tilemsi phosphate rock (TPR) of Mali is a good and cheaper alternative to imported phosphate fertilizers. Many soil microorganisms can also mobilize sparingly soluble inorganic phosphates, and several have a good potential to improve plant growth. With the aim of improving the response of wheat cultivated in Mali to fertilization with TPR, in this work we describe the isolation and selection from four different Malian soils of TPR-solubilizing microorganisms (TSM) with high P-mobilization activities. When the rhizosphere of three wheat cultivars (Alkama Beri, Hindi Tossom and Tetra) was used to isolate TSM, only bacterial isolates were selected. TPR-solubilizing fungi were only obtained by soil enrichment in liquid medium containing TPR as sole P source. In the rhizosphere a significant correlation was observed between the total microbial population and the number of microorganisms solubilizing TPR. No such correlation was observed in the rhizoplane. Initially 44 bacteria and 18 fungi were selected, but after 10 subcultures on agar plates and a liquid medium, only 6 bacteria and 2 fungi retained their high P solubilizing trait. A field inoculation trial was established during the growing season 2000–2001 in Koygour. Wheat cv. Tetra was inoculated with the 8 selected TSM (6 bacteria and 2 fungi) and fertilized with 30 kg ha−1 P added as TPR or diammonium phosphate. The growth parameters measured were plant height at 30 and 60 days, the number of leaves per main stem at 60 days, and root and shoot dry matter yields 60 days after planting. Root colonization by indigenous arbuscular mycorrhizas (AM) was also measured in 45 day-old plants. Significant interactions were observed between TSM inoculation and P-fertilization for root colonization with AM, plant height at 30 days and root dry matter yield. The bacterial isolate Pseudomonas sp. BR2, which appeared to be a mycorrhiza helper bacterium, significantly enhanced wheat seedling emergence very early (5 days after planting) under field condition, and caused 128% increase in root dry matter yield. The two TPR-solubilizing fungal isolates Aspergillus awamori Nakazawa C1 and Penicillium chrysogenum Thom C13 also caused respectively 60 and 44% increases in root dry matter yields. The choice of the TSM BR2, C1 and C13 for further field trials is discussed. This article was previously published in Nutrient Cycling in Agroecosystems Volume 72/2 pages 147–157. The online version of the original article can be found at .  相似文献   

16.
Microorganisms, such as bacteria, viruses, and fungi, and host cells, such as plants and animals, have carbohydrate chains and lectins that reciprocally recognize one another. In hosts, the defense system is activated upon non-self-pattern recognition of microbial pathogen-associated molecular patterns. These are present in Gram-negative and Gram-positive bacteria and fungi. Glycan-based PAMPs are bound to a class of lectins that are widely distributed among eukaryotes. The first step of bacterial infection in humans is the adhesion of the pathogen’s lectin-like proteins to the outer membrane surfaces of host cells, which are composed of glycans. Microbes and hosts binding to each other specifically is of critical importance. The adhesion factors used between pathogens and hosts remain unknown; therefore, research is needed to identify these factors to prevent intestinal infection or treat it in its early stages. This review aims to present a vision for the prevention and treatment of infectious diseases by identifying the role of the host glycans in the immune response against pathogenic intestinal bacteria through studies on the lectin-glycan interaction.  相似文献   

17.
赵丽冰  钟细娥  詹耀才 《广东化工》2007,34(7):81-82,90
不冻蛋白质(Ice Structuring Proteins,简称ISP)也称冻结构蛋白,是一种新型的抗冻剂,其具有抑制冰结晶生长的作用,包括抑制重结晶,同时还具有影响冰晶组织结构的作用。迄今为止科学工作者已从陆地昆虫、植物、细菌和真菌等各类生物中分离到多种抗冻蛋白,不冻蛋白质可以应用于冷冻食品工业、农业种植、医学等领域。本文简要地介绍了不冻蛋白质的性质、起源及研发历程、应用及发展趋势。  相似文献   

18.
Reusable glass dishes are recommended for use with the six-stage viable impactor for size-fractionated bioaerosol sampling. However, it is not convenient to use glass dishes because they are fragile and heavy, not to mention the time-consuming preparation process prior to bioaerosol sampling. On the other hand, disposable plastic dishes have been widely used in microbiology laboratories. However, plastic materials can retain electrostatic charges and may lead to sampling bias. The objective of this study was to evaluate the sampling bias with the use of plastic dishes when a multistage viable impactor is used for airborne fungi and bacteria sampling for field sampling. Two six-stage viable impactors were placed side-by-side 1 m apart in a 147-m3 room. One was used with plastic dishes and the other with glass dishes. Compared with the concentration data obtained with glass dishes, those collected with the plastic dishes demonstrated a significant difference for both fungi and bacteria. However, there was a strong correlation between the data obtained using glass and plastic dishes, which can be estimated by Cplastic = 0.88 Cglass for airborne fungi and Cplastic = 0.86 Cglass for airborne bacteria. When using plastic dishes fungi and bacteria counts were underestimated by 12% and 14%, respectively.

Copyright 2015 American Association for Aerosol Research  相似文献   

19.
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson’s disease and amyotrophic lateral sclerosis—possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut–brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria’s effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host–bacteria interactions in the context of protein conformational diseases.  相似文献   

20.
Strigolactones (SLs) are a new group of plant hormones, which have been intensively investigated during the last few years. The wide spectrum of SLs actions, including the regulation of shoot/root architecture, and the stimulation of the interactions between roots and fungi or bacteria, as well as the stimulation of germination of parasitic plants, indicates that this group of hormones may play an important role in the mechanisms that control soil exploration, and the root-mediated uptake of nutrients. Current studies have shown that SLs might be factors that have an influence on the plant response to a deficiency of macronutrients. Experimental data from the last four years have confirmed that the biosynthesis and exudation of SLs are increased under phosphorus and nitrogen deficiency. All these data suggest that SLs may regulate the complex response to nutrient stress, which include not only the modification of the plant developmental process, but also the cooperation with other organisms in order to minimize the effects of threats. In this paper the results of studies that indicate that SLs play an important role in the response to nutrient stress are reviewed and the consequences of the higher biosynthesis and exudation of SLs in response to phosphorus and nitrogen deficiency are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号