首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroplasticity in the brittle, superconducting ceramic MgB2 would allow for the mechanical drawing of thin, dense superconducting wires, as done for metallic superconductors. Here, we report very large uniaxial compressive deformation (engineering strain of 67% or true strain of −1.1) without fracture at 1000 °C for specimens densified from commercially available MgB2 powders with MgO and MgB4 second phases. Plastic flow occurs under a diffusion-controlled mechanism with activation energies of 255–447 kJ mol−1 and stress exponents of 1.4–2.0, indicative of superplastic behavior.  相似文献   

2.
The thermal expansion of U2Fe13.6Si3.4 and Lu2Fe13.6Si3.4 has been measured by X-ray powder diffraction. Both compounds exhibit a large spontaneous magnetostriction. In the ground state, the volume effect 11.2 × 10−3 in U2Fe13.6Si3.4 consists of almost equal contributions from the Fe–Fe and U–Fe exchange interactions (6 × 10−3 and 5 × 10−3, respectively). In Lu2Fe13.6Si3.4, the volume effect is 8.9 × 10−3.  相似文献   

3.
An investigation of microstructural evolution with various current densities in a lead-free Cu/SnAgCu/Au/Cu solder system was conducted in this study. Current stressing induced migration of Cu toward the anode and resulted in the formation of Cu6Sn5 at the interface. The consumption rates of Cu were calculated to be 2.24 × 10−7 μm/s and 5.17 × 10−7 μm/s at 1.0 × 103 A/cm2 and 2.0 × 103 A/cm2, respectively, while the growth rates of Cu6Sn5 were 6.33 × 10−7 μm/s and 7.72 × 10−7 μm/s. The atomic fluxes of Cu were found to be 2.50 × 1012 atom/cm2 s and 5.88 × 1012 atom/cm2 s at the above-mentioned current densities. The diffusivities of Cu in Cu6Sn5 were 2.02 × 10−11 cm2/s and 2.38 × 10−11 cm2/s under 1.0 × 103 A/cm2 and 2.0 × 103 A/cm2 of current stressing. Current stressing effectively enhances the migration of Cu in Cu6Sn5 and results in a 1000-fold increase of magnitude in diffusivity compared to thermal aging. (Cu1−x,Aux)6Sn5 compound was formed near the anode after a long period of current stressing.  相似文献   

4.
New pyrophosphate Sn0.9Sc0.1(P2O7)1−δ was prepared by an aqueous solution method. The structure and conductivity of Sn0.9Sc0.1(P2O7)1−δ have been investigated. XRD analysis indicates that Sn0.9Sc0.1(P2O7)1−δ exhibits a 3 × 3 × 3 super structure. It was found that Sn0.9Sc0.1(P2O7)1−δ prepared by an aqueous method is not conductive. The total conductivity of Sn0.9Sc0.1(P2O7)1−δ in open air is 2.35 × 10−6 and 2.82 × 10−9 S/cm at 900 and 400 °C respectively. In wet air, the total conductivity is about two orders of magnitude higher (8.1 × 10−7 S/cm at 400 °C) than in open air indicating some proton conduction. SnP2O7 and Sn0.92In0.08(P2O7)1−δ prepared by an acidic method were reported fairly conductive but prepared by similar solution methods are not conductive. Therefore, the conductivity of SnP2O7-based materials might be related to the synthetic history. The possible conduction mechanism of SnP2O7-based materials has been discussed in detail.  相似文献   

5.
Surface resolidification experiments using a high power CO2-laser have been performed on an Al2O3ZrO2 containing 36.8 at.% ZrO2 eutectic alloy at beam velocities between 0.3 and 8 mm·s−1. The local growth rate has been measured by observation of the orientation of the microstructure using scanning electron microscopy. In the whole range of velocities, the structure is essentially a regular lamellar eutectic and the value of the growth productλ2V was found to be ≈ 9.6·10−17 m3·s−1. The measured eutectic spacings were compared with Jackson and Hunt model. Using thermophysical properties from the literature, the measured spacings were more than four times larger than the calculated ones. Assuming all parameters of the growth relationship except the diffusion coefficient to be of the right order of magnitude or to have a negligible influence, agreement is found when using a larger liquid diffusion coefficient,DL≈5·10−10m2·s−1.  相似文献   

6.
The present paper focuses on the study of SCC behaviour of a new Al–Cu–Li alloy. For this purpose, two conventional media – NaCl and NaCl + H2O2 – were used for comparison with commercial alloys 7075 and 8090. This new alloy shows lower susceptibility to SCC than conventional alloys as it does not undergo environmentally-induced embrittlement in NaCl solutions and in 1 M NaCl + 0.3% H2O2 in which the 7075 and 8090 alloys, respectively, undergo environmentally-induced fracture.Solution composition was modified in order to determine the environmental conditions and strain rates under which this new alloy will crack due to a stress corrosion cracking phenomenon. The addition of 0.6 M sulphates to 1 M NaCl + 0.3% H2O2 solution allows the definition of a range of strain rate (between 10−7 and 10−6 s−1) in which this new alloy undergoes stress corrosion cracking.  相似文献   

7.
SiC powder prepared by the Na flux method at 1023 K for 24 h and Ba were used as starting materials for synthesis of tribarium tetrasilicide acetylenide, Ba3Si4C2. Single crystals of the compound were obtained by heating the starting materials with Na at 1123 K for 1 h and by cooling to 573 K at a cooling rate of −5.5 K/h. The single crystal X-ray diffraction peaks were indexed with tetragonal cell dimensions of a = 8.7693(4) and c = 12.3885(6) Å, space group I4/mcm (No.140). Ba3Si4C2 has the Ba3Ge4C2 type structure which can be described as a cluster-replacement derivative of perovskite (CaTiO3), and contains isolated anion groups of slightly compressed [Si4]4− tetrahedra and [C2]2− dumbbells. The electrical conductivity measured for a not well-sintered polycrystalline sample was 2.6 × 10−2–7 × 10−3 S cm−1 in the temperature range of 370–600 K and slightly increased with increasing temperature. The Seebeck coefficient showed negative values of around −200 to −300 μV K−1.  相似文献   

8.
D. Hardie  J. Xu  E. A. Charles  Y. Wei   《Corrosion Science》2004,46(12):3089-3100
An investigation was carried out of the effect of hydrogen absorption on the tensile ductility of composite specimens representing stainless steel weld overlays on low alloy steel substrates as used in the fabrication of hydrogenators. Specimens of the two stainless steels (AISI 309 and 347) involved in hydrogen cracking were also fractured in tension at strain rates between 5.9 × 10−6 and 1.5 × 10−3 s−1 after thermal charging with hydrogen. Results indicated that only the 347 samples suffered significant embrittlement by hydrogen and the original ductility could be restored by subsequent annealing for a time and temperature determined by the hydrogen diffusivity.  相似文献   

9.
Compressive deformation behavior of a cast Pd40Ni40P20 bulk metallic glass in the supercooled liquid region (589–670 K) was investigated at strain rates ranging from 10−4 to 10−2 s−1. The material exhibited excellent mechanical formability in the supercooled liquid region. However, in contrast to a Newtonian behavior generally observed in oxide glasses, the present alloy also showed a non-Newtonian behavior, depending upon the temperature and applied strain rate. Specifically, the alloy is like a Newtonian fluid at high temperatures, but becomes non-Newtonian at low temperatures and high strain rates. Structures of the amorphous material, both before and after deformation, were examined using X-ray diffraction and high-resolution transmission electron microscopy. The non-Newtonian behavior is proposed to be associated with the glass instability during deformation.  相似文献   

10.
Hydrogen embrittlement of high strength pipeline steels   总被引:4,自引:0,他引:4  
A comparison was made between three API grade pipeline steels (X60, X80 and the X100 grade) from the point of view of their susceptibility to hydrogen embrittlement. The main aim was to determine whether the development of higher strength materials led to greater susceptibility to hydrogen embrittlement. This was achieved by straining at 2.8 × 10−5 s−1 after cathodic charging. The results showed that there is a distinct susceptibility to loss of ductility after charging and this tends to increase with the strength level of the steel at a charging current density above 0.44 mA mm−2. All three steels exhibited fine cracks parallel to the major rolling direction after charging and an increasing amount of brittleness on the fracture surface.  相似文献   

11.
The dissolution process of nickel in liquid Pb-free 87.5% Sn–7.5% Bi–3% In–1% Zn–1% Sb and 80% Sn–15% Bi–3% In–1% Zn–1% Sb soldering alloys has been investigated by the rotating disc technique at 250–450 °C. The temperature dependence of the nickel solubility in soldering alloys obeys a relation of the Arrhenius type cs = 4.94 × 102 exp(−39500/RT)% for the former alloy and cs = 4.19 × 102 exp(−40200/RT)% for the latter, where R is in J mol−1 K−1 (8.314 J mol−1 K−1) and T is in K. Whereas the solubility values differ considerably, the dissolution rate constants are rather close for these alloys and fall in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. Appropriate diffusion coefficients vary from 0.16 × 10−9 to 2.02 × 10−9 m2 s−1. With both alloys, the Ni3Sn4 intermetallic layer is formed at the interface of nickel and the saturated or undersaturated melt at dipping times of 300–2400 s. The other Ni–Sn intermetallic compounds are found to be missing. A simple mathematical equation is proposed to evaluate the Ni3Sn4 layer thickness in the case of undersaturated melts. The tensile strength of the nickel-to-alloy joints is 94–102 MPa, with the relative elongation being 2.0–2.5%.  相似文献   

12.
The low temperature thermoelectric properties of Zn4Sb3 samples prepared by the gradient freeze (GF) method and sintering have been characterized. With decreasing temperature a dramatic rise in the thermal expansion is observed associated with the structural transition from β- to α-phase; Δl/l=2.8×10−4 at TsGF=257.4 K for GF and Δl/l=1.6×10−4 at TsS=236.5 K for sintered samples. Enhancement is observed in electrical conductivity and p-type thermopower at TsGF and TsS, while a reduction is observed in the magnetic susceptibility. The GF sample exhibits higher thermoelectric performance than the sintered sample. The power factor of the α-phase in the GF sample is twice as large as that of the β-phase; it exceeds 20 μW/cm·K2 between 120 and 240 K, indicating that the α-phase Zn4Sb3 is one of the prime candidates for thermoelectric materials for cryogenic use.  相似文献   

13.
Increased turbine inlet temperature in advanced turbines has promoted the development of thermal barrier coating (TBC) materials with high-temperature capability. In this paper, BaLa2Ti3O10 (BLT) was produced by solid-state reaction of BaCO3, TiO2 and La2O3 at 1500 °C for 48 h. BLT showed phase stability between room temperature and 1400 °C. BLT revealed a linearly increasing thermal expansion coefficient with increasing temperature up to 1200 °C and the coefficients of thermal expansion (CTEs) are in the range of 1 × 10− 5–12.5 × 10− 6 K− 1, which are comparable to those of 7YSZ. BLT coatings with stoichiometric composition were produced by atmospheric plasma spraying. The coating contained segmentation cracks and had a porosity of around 13%. The microhardness for the BLT coating is 3.9–4.5 GPa. The thermo-physical properties of the sprayed coating were investigated. The thermal conductivity at 1200 °C is about 0.7 W/mK, exhibiting a very promising potential in improving the thermal insulation property of TBC. Thermal cycling result showed that the BLT TBC had a lifetime of more than 1100 cycles of about 200 h at 1100 °C. The failure of the coating occurred by cracking at the thermally grown oxide (TGO) layer due to severe oxidation of bond coat. Based on the above merits, BLT could be considered as a promising material for TBC applications.  相似文献   

14.
The enthalpy increments and the standard molar Gibbs energies in the formation of LaFeO3(s) have been measured using a high-temperature Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. The corresponding expression for enthalpy increments is given as:
H°(T)−H°(298.15 K)(J mol−1)(±1.2%)=−36887.27+103.53 T(K)+25.997×10−3T2(K)+11.055×105/T(K).
The heat capacity, the first differential of H°(T)−H°(298.15 K) with respect to temperature, is given as:
Cp,m°(T)(JK−1mol−1)=103.53+51.994×10−3T(K)−11.055×105/T2(K).
From the measured e.m.f. of the cell, (−)Pt/(LaFeO3(s)+La2O3(s)+Fe(s))//CSZ//(Ni(s)+NiO(s))/Pt(+), and the relevant ΔfGm°(T) values from the literature, the ΔfGm°(LaFeO3, s, T) was calculated, and is given as:
ΔfGm°(LaFeO3, s, T)(kJmol−1)(±0.72)=−1319.2+0.2317T(K).
The calculated ΔfHm°(LaFeO3, s, 298.15 K) and S°(298.15 K) values obtained using the second law method are −1334.7 kJ mol−1 and 128.9 J K−1 mol−1, respectively.  相似文献   

15.
The modifications of calcium sulphate (CaSO4·2H2O) single crystals are investigated by means of Raman and Fourier transform infrared spectroscopy (FT-IR) using 100 MeV Ag8+ ions in the fluence range 1 × 1011 to 5 × 1013 ions/cm2. It is observed that the intensities of the Raman modes decrease with increase in ion fluence. We determined damage cross-section (σ) for all the Raman active modes and found to be different for different Raman modes. Further, FT-IR studies have been carried out to confirm surface amorphisation for a fluence of 1 × 1013 ions/cm2. It is observed that the absorption peaks at 1132–1156 cm−1 corresponds to ν3(SO42−) mode. The decrease in Raman peaks intensity with ion fluence is attributed to degradation of ν3(SO42−) modes present on the surface of the sample.  相似文献   

16.
The permeation of the rare earth element Sm to the heteropoly compound K3PW12O40 using the rare earth gas phase-heated diffused permeation method at 550 °C is reported for the first time. The studies of infrared spectroscopy (IR) and X-ray diffraction (XRD) indicate that the Keggin structure of the compound is destroyed. The bond of W–O–W is broken and tungsten bronze K0.3WO3 is produced after permeation. Inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS) were used to determine the percentage composition of the Sm in a permeated sample. The result shows that there is Sm in a permeated sample and Sm interacts with the other component of the compound. Conductivity of compounds before and after permeation was investigated by four-electrode method. It reveals that the conductivity of the permeated sample is 4.18 × 10−4 S cm−1, which is 1000 times higher than that of the original sample.  相似文献   

17.
《Intermetallics》2005,13(8):827-832
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0×10−4 to 1.0×103 s−1) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0×10−4 s−1). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0×103 s−1), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.  相似文献   

18.
Residual stress distribution in an EB-PVD 4 mol% Y2O3-ZrO2 thermal barrier coating (TBC) layer coated on a superalloy substrate has been measured by micro-Raman spectroscopy. Piezo-spectroscopic coefficient was independently calibrated on a freestanding TBC layer. The coefficient for uniaxial stress is Πuni = 5.43 cm− 1GPa− 1. The stress measurement through the TBC thickness shows compressive stress distribution from small to an almost large constant value. Such a distribution agrees with theoretical consideration since the small stress correctly reflects the free edge effect and the large constant stress is closely related to TBC bulk stresses.  相似文献   

19.
Compressive tests were conducted on metallic glass matrix composites at a series loading rates. It was found that mechanical properties of the composite, e.g. yielding stress and plasticity, have a week dependence on strain rates of 4.0 × 10−4 s−1–4.0 × 10−1 s−1. Four composites were tested at a constant strain rate of 2.3 × 10 s−1 to uncover the dynamic deformation behaviors. Compared with the quasi-static case, the yielding strength increased under dynamic loading rate, but the plasticity decreased significantly. On the other hand, the dynamic compressive has closely relation with the dendrite size and volume fraction. The decreasing of the dendrite size and volume fraction leaded to the dynamic yielding strength increased but the plasticity decreased. For a same composite, e.g. T1 alloy, the yielding strengths increased slightly but fracture strain decreased with increasing of dynamic strain rates.  相似文献   

20.
By combining neutron diffraction, high-resolution transmission electron microscopy and thermal analysis measurements, the microstructure of as-cast Ti40Zr25Ni8Cu9Be18 BMG with diameter of 2 mm was identified to be quenched-in nuclei/amorphous matrix. The quenched-in nuclei transform to (Ti,Zr)Be2 nanocrystals with the average size of 4 nm homogeneously distributed into the amorphous matrix during deformation, which could be responsible for the large room-temperature compressive plastic strain, up to 8.0% at a constant strain rate of 5 × 10−4 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号