首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
Abstract

Fossil-fired plants play an important role in electricity networks as mid-merit plants that can respond relatively quickly to changes in supply and demand. As a consequence, they are required to operate over a wide output range and play an important role in maintaining the quality and security of electricity supply by providing response and reserve capacity. Carbon dioxide capture and storage (CCS) has been identified as a critical technology for future electricity generation from coal in the UK. Although the performance of CCS schemes where CO2 capture plants are operated at full load has been considered in detail, part load performance is less well understood. Developing a better understanding of part load performance of plants operating with CO2 capture is crucial in determining their suitability to operate as mid-merit plants. This paper presents an assessment of the potential impact of adding post-combustion CO2 capture at pulverised-coal power plants. Estimated performance of steam cycles working with post-combustion CO2 capture plant are presented at full and part load, leading to performance predictions for pulverised-coal power plants operated over a range of loads and with varying levels of CO2 capture. By adjusting the operation of the capture plant, as well as the boiler/steam cycle, an extended range of operation can be achieved including lower minimum stable generation levels and additional 'pumped storage like' capacity for times of high demand. For example, plant operators can alter the energy penalty for the CO2 capture plant with an associated change in plant output by reducing the level of CO2 capture. This can allow extra electricity to be generated and sold when electricity prices are high. With solvent storage it should also be possible to increase power plant output for a number of hours, but without associated increases in CO2 emissions.  相似文献   

2.
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75–84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.  相似文献   

3.
Carbon capture and storage (CCS) facilities coupled to power plants provide a climate change mitigation strategy that potentially permits the continued use of fossil fuels whilst reducing the carbon dioxide (CO2) emissions. This process involves three basic stages: capture and compression of CO2 from power stations, transport of CO2, and storage away from the atmosphere for hundreds to thousands of years. Potential routes for the capture, transport and storage of CO2 from United Kingdom (UK) power plants are examined. Six indicative options are evaluated, based on ‘Pulverised Coal’, ‘Natural Gas Combined Cycle’, and ‘Integrated (coal) Gasification Combined Cycle’ power stations. Chemical and physical CO2 absorption capture techniques are employed with realistic transport possibilities to ‘Enhanced Oil Recovery’ sites or depleted gas fields in the North Sea. The selected options are quantitatively assessed against well-established economic and energy-related criteria. Results show that CO2 capture can reduce emissions by over 90%. However, this will reduce the efficiency of the power plants concerned, incurring energy penalties between 14 and 30% compared to reference plants without capture. Costs of capture, transport and storage are concatenated to show that the whole CCS chain ‘cost of electricity’ (COE) rises by 27-142% depending on the option adopted. This is a significant cost increase, although calculations show that the average ‘cost of CO2 captured’ is £15/tCO2 in 2005 prices [the current base year for official UK producer price indices]. If potential governmental carbon penalties were introduced at this level, then the COE would equate to the same as the reference plant, and make CCS a viable option to help mitigate large-scale climate change.  相似文献   

4.
Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO2) capture and storage (CCS) can mitigate CO2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO2 emission projections from LPS in India, identifies the potential CO2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.  相似文献   

5.
Thermoelectric power plants require significant quantities of water, primarily for the purpose of cooling. Water also is becoming critically important for low-carbon power generation. To reduce greenhouse gas emissions from pulverized coal (PC) power plants, post-combustion carbon capture and storage (CCS) systems are receiving considerable attention. However, current CO2 capture systems require a significant amount of cooling. This paper evaluates and quantifies the plant-level performance and cost of different cooling technologies for PC power plants with and without CO2 capture. Included are recirculating systems with wet cooling towers and air-cooled condensers (ACCs) for dry cooling. We examine a range of key factors affecting cooling system performance, cost and plant water use, including the plant steam cycle design, coal type, carbon capture system design, and local ambient conditions. Options for reducing power plant water consumption also are presented.  相似文献   

6.
This paper combines an existing projection of the development of electricity production with a technology-specific environmental assessment. The combination of these two approaches, which so far have only been performed separately, allows a discussion about environmental effects of carbon capture and storage (CCS) implementation strategies on a national level. The results identify the future role of lignite and hard coal in German power production. The implementation of CCS technology leads to a considerable loss of efficiency. Due to CCS, about 50 million t of lignite will be additionally required in 2030 in comparison to the reference case without CCS in 2010. Increasing demand, the replacement of old plants and the compensation of efficiency losses lead to highly ambitious expansion rates. In the case of CCS implementation, the global warming potential (GWP) can be reduced by up to 70%. However, other environmental impacts increase in part considerably. Compliance with national ceilings for NOx emissions can only be reached by compensation measures in other sectors. The results of the environmental assessment demonstrate the significant role of the coal composition, coal origin and the required transport. CO2 pipeline transport and CO2 storage make a fairly minor contribution to the overall environmental impact.  相似文献   

7.
CO2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO2 (typically by 85–90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15–30% for current CCS systems. To characterize such impacts, an alternative definition of the “energy penalty” is proposed in lieu of the prevailing use of this term.  相似文献   

8.
Reviewing the progress of CO2 capture and storage (CCS) technology, the main obstacles and the potentials of greenhouse gas control in China are identified. An important point can be drawn is that the innovative energy systems, besides simple implementation of existing technology, are needed for CO2 control in China. On the basis of integration principle of energy utilization and CO2 separation, several innovative energy systems, including chemical-looping combustion with CO2 capture, a partial gasification with O2/CO2 cycle, and a polygeneration system with CO2 capture, are introduced. With synergetic integrating CO2 into chemical energy conversion and utilization processes, these systems may make breakthrough in CO2 capture with less or even zero energy penalty. Finally, according to the specific issue of China, a new scenario of Energy Network, which composed of energy source, transportation chain, and terminal user, is recommended for sustainable development in China.  相似文献   

9.
Joule Bergerson  Lester Lave   《Energy Policy》2007,35(12):6225-6234
Using four times as much coal in 2050 for electricity production need not degrade air quality or increase greenhouse gas emissions. Current SOx and NOx emissions from the power sector could be reduced from 12 to less than 1 and from 5 to 2 million tons annually, respectively, using advanced technology. While direct CO2 emissions from new power plants could be reduced by over 87%, life cycle emissions could increase by over 25% due to the additional coal that is required to be mined and transported to compensate for the energy penalty of the carbon capture and storage technology. Strict environmental controls push capital costs of pulverized coal (PC) and integrated coal gasification combined cycle (IGCC) plants to $1500–1700/kW and $1600–2000/kW, respectively. Adding carbon capture and storage (CCS) increases costs to $2400–2700/kW and $2100–3000/kW (2005 dollars), respectively. Adding CCS reduces the 40–43% efficiency of the ultra-supercritical PC plant to 31–34%; adding CCS reduces the 32–38% efficiency of the GE IGCC plant to 27–33%. For IGCC, PC, and natural gas combined cycle (NGCC) plants, the carbon dioxide tax would have to be $53, $74, and $61, respectively, to make electricity from a plant with CCS cheaper. Capturing and storing 90% of the CO2 emissions increases life cycle costs from 5.4 to 11.6 cents/kWh. This analysis shows that 90% CCS removal efficiency, although being a large improvement over current electricity generation emissions, results in life cycle emissions that are large enough that additional effort is required to achieve significant economy-wide reductions in the US for this large increase in electricity generation using either coal or natural gas.  相似文献   

10.
In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on carbon capture and storage (CCS) options. Analogues include the construction of new power plants, transport of natural gas by pipelines, underground natural gas storage (UGS), natural gas production and enhanced oil recovery (EOR) projects. It is investigated whether crucial knowledge on environmental impacts is lacking that may postpone the implementation of CCS projects. This review shows that the capture of CO2 from power plants results in a change in the environmental profile of the power plant. This change encompasses both increase and reduction of key atmospheric emissions, being: NOx, SO2, NH3, particulate matter, Hg, HF and HCl. The largest trade-offs are found for the emission of NOx and NH3 when equipping power plants with post-combustion capture. Synergy is expected for SO2 emissions, which are low for all power plants with CO2 capture. An increase in water consumption ranging between 32% and 93% and an increase in waste and by-product creation with tens of kilotonnes annually is expected for a large-scale power plant (1 GWe), but exact flows and composition are uncertain. The cross-media effects of CO2 capture are found to be uncertain and to a large extent not quantified. For the assessment of the safety of CO2 transport by pipeline at high pressure an important knowledge gap is the absence of validated release and dispersion models for CO2 releases. We also highlight factors that result in some (not major) uncertainties when estimating the failure rates for CO2 pipelines. Furthermore, uniform CO2 exposure thresholds, detailed dose-response models and specific CO2 pipeline regulation are absent. Most gaps in environmental information regarding the CCS chain are identified and characterized for the risk assessment of the underground, non-engineered, part of the storage activity. This uncertainty is considered to be larger for aquifers than for hydrocarbon reservoirs. Failure rates are found to be heavily based on expert opinions and the dose-response models for ecosystems or target species are not yet developed. Integration and validation of various sub-models describing fate and transport of CO2 in various compartments of the geosphere is at an infant stage. In conclusion, it is not possible to execute a quantitative risk assessment for the non-engineered part of the storage activity with high confidence.  相似文献   

11.
We present results of a major survey of Chinese opinion leaders conducted from March to April 2009, supported by EU–UK–China near zero emissions coal (NZEC) initiative. Respondents were drawn from 27 provinces and regions using an online survey with follow-up face-to-face interviews. A total of 131 experts and decision-makers from 68 key institutions were consulted through online survey. This survey is the first to focus on demonstration projects in particular and is the most geographically diverse. We aim to understand perceptions of applying CCS technologies in the first large-scale CCS demonstration project in China. Though enhanced oil recovery (EOR) and enhanced coal bed methane recovery (ECBM) may not be long-term solutions for CO2 storage, they were viewed as the most attractive storage technologies for the first CCS demonstration project. With regard to CO2 capture technology, on the whole, post-combustion (which would be most applicable to the vast majority of existing power plants which are pulverised-coal) received slightly higher support than pre-combustion. More surprising, respondents from both the power and oil industries favoured pre-combustion. There was no consensus regarding the appropriate scale for the first demonstration. A large number of respondents were concerned about the energy penalty associated with CCS and its impact on the long-term sustainability of coal supply in China, although such concerns were much reduced compared with surveys in 2006 and 2008.  相似文献   

12.
Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.  相似文献   

13.
Secure, reliable and affordable energy supplies are necessary for sustainable economic growth, but increases in associated carbon dioxide (CO2) emissions, and the associated risk of climate change are a cause of major concern. Experts have projected that the CO2 emissions related to the energy sector will increase 130% by 2050 in the absence of new policies or supply constraints as a result of increased fossil fuel usage. To address this issue will require an energy technology revolution involving greater energy efficiency, increased renewable energies and nuclear power, and the near-decarbonisation of fossil fuel-based power generation. Nonetheless, fossil fuel usage is expected to continue to dominate global energy supply. The only technology available to mitigate greenhouse gas (GHG) emissions from large-scale fossil fuel usage is carbon capture and storage (CCS), an essential part of the portfolio of technologies that is needed to achieve deep global emission reductions. However, CCS technology faces numerous issues and challenges before it can be successfully deployed. With Malaysia has recently pledged a 40% carbon reduction by 2020 in the Copenhagen 2009 Climate Summit, CCS technology is seen as a viable option in order to achieve its target. Thus, this paper studies the potential and feasibility of coal-fired power plant with CCS technology in Malaysia which includes the choices of coal plants and types of capture technologies possible for implementation.  相似文献   

14.
In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO2 emissions and a criterion with a compromise between CO2 and cost (CO2-cost criterion) have been proposed. Calculations show reduction in CO2 emissions from 2020 to 2030, reaching a maximum CO2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22–28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.  相似文献   

15.
Carbon capture and storage (CCS) covers a broad range of technologies that are being developed to allow carbon dioxide (CO2) emissions from fossil fuel use at large point sources to be transported to safe geological storage, rather than being emitted to the atmosphere. Some key enabling contributions from technology development that could help to facilitate the widespread commercial deployment of CCS are expected to include cost reductions for CO2 capture technology and improved techniques for monitoring stored CO2. It is important, however, to realise that CCS will always require additional energy compared to projects without CCS, so will not be used unless project operators see an appropriate value for reducing CO2 emissions from their operations or legislation is introduced that requires CCS to be used. Possible key advances for CO2 capture technology over the next 50 years, which are expected to arise from an eventual adoption of CCS as standard practice for all large stationary fossil fuel installations, are also identified. These include continued incremental improvements (e.g. many potential solvent developments) as well as possible step-changes, such as ion transfer membranes for oxygen production for integrated gasifier combined cycle and oxyfuel plants.  相似文献   

16.
Hydrogen production for export to Japan and Korea is increasingly popular in Australia. The theoretically possible paths include the use of the excess wind and solar energy supply to the grid to produce hydrogen from natural gas or coal. As a contribution to this debate, here I discuss the present contribution of wind and solar to the electricity grid, how this contribution might be expanded to make a grid wind and solar only, what is the energy storage needed to permit this supply, and what is the ratio of domestic total primary energy supply to electricity use. These factors are required to determine the likeliness of producing hydrogen for export. The wind and solar energy capacity, presently at 6.7 and 11.4 GW, have to increase almost 8 times up to values of 53 and 90 GW respectively to support a wind and solar energy only electricity grid for the southeast states only. Additionally, it is necessary to build-up energy storage of actual power >50 GW and stored energy >3000 GW h to stabilize the grid. If the other states and territories are considered, and also the total primary energy supply (TPES) rather than just electricity, the wind and solar capacity must be increased of a further 6–8 times. It is concluded that it is extremely unlikely that hydrogen for export could be produced from the splitting of the water molecule by using excess wind and solar energy, and it is very unlikely that wind and solar may fully cover the local TPES needs. The most likely scenario is production hydrogen via syngas from either natural gas or coal. Production from natural gas and coal needs further development of techniques, to include CO2 capture, a way to reuse or store CO2, and finally, the better energy efficiency of the conversion processes. There are several challenges for using natural gas or coal to produce hydrogen with near-zero greenhouse gas emissions. Carbon capture, utilization, and storage technologies that ensure no CO2 is released in the production process, and new technologies to separate the oxygen from the air, and in case of natural gas, the water, and the CO2 from the combustion products, are urgently needed to make sense of the fossil fuel hydrogen production. There is no benefit from producing hydrogen from fossil fuels without addressing the CO2 issue, as well as the fuel energy penalty issue during conversion, that is simply translating in a net loss of fuel energy with the same CO2 emission.  相似文献   

17.
As part of the USDOE's Carbon Sequestration Program, an integrated modeling framework has been developed to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements. This paper uses the newly developed model of an integrated gasification combined cycle (IGCC) plant to analyze the effects of adding CCS to an IGCC system employing a GE quench gasifier with water gas shift reactors and a Selexol system for CO2 capture. Parameters of interest include the effects on plant performance and cost of varying the CO2 removal efficiency, the quality and cost of coal, and selected other factors affecting overall plant performance and cost. The stochastic simulation capability of the model is also used to illustrate the effect of uncertainties or variability in key process and cost parameters. The potential for advanced oxygen production and gas turbine technologies to reduce the cost and environmental impacts of IGCC with CCS is also analyzed.  相似文献   

18.
This study models the costs of electricity generation with carbon capture and sequestration (CCS), from generation at the power plant to carbon injection at the reservoir, examining the economic factors that affect technology choice and CCS costs at the individual plant level. The results suggest that natural gas and coal prices have profound impacts on the carbon price needed to induce CCS. To extend previous analyses we develop a "cost region" graph that models technology choice as a function of carbon and fuel prices. Generally, the least-cost technology at low carbon prices is pulverized coal, while intermediate carbon prices favor natural gas technologies and high carbon prices favor coal gasification with capture. However, the specific carbon prices at which these transitions occur is largely determined by the price of natural gas. For instance, the CCS-justifying carbon price ranges from $27/t CO2 at high natural gas prices to $54/t CO2 at low natural gas prices. This result has important implications for potential climate change legislation. The capital costs of the generation and CO2 capture plant are also highly important, while pipeline distance and criteria pollutant control are less significant.  相似文献   

19.
The oxy‐coal combustion with carbon dioxide capture and sequestration is among the promising clean coal technologies for reducing CO2 emissions. Because most of oxy‐coal power plants need to cope with energy penalties from air separation and CO2 compressor units, the pressurized combustion is added to reduce the electricity demand for the CCS system, and the waste heat of the pressurized flue gas is recovered by the heat integration technique to increase the power generation from steam turbines. Finally, the efficiency enhancement of a 100 MWe‐scale power plant is successfully validated by Aspen Plus simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
《Applied Thermal Engineering》2007,27(16):2693-2702
This paper presents the results of technical and economic studies in order to evaluate, in the French context, the future production cost of electricity from IGCC coal power plants with CO2 capture and the resulting cost per tonne of CO2 avoided. The economic evaluation shows that the total cost of base load electricity produced in France by coal IGCC power plants with CO2 capture could be increased by 39% for ‘classical’ IGCC and 28% for ‘advanced’ IGCC. The cost per tonne of avoided CO2 is lower by 18% in ‘advanced’ IGCC relatively to ‘classical’ IGCC. The approach aimed to be as realistic as possible for the evaluation of the energy penalty due to the integration of CO2 capture in IGCC power plants. Concerning the CO2 capture, six physical and chemical absorption processes were modeled with the Aspen Plus™ software. After a selection based on energy performance three processes were selected and studied in detail: two physical processes based on methanol and Selexol™ solvents, and a chemical process using activated MDEA. For ‘advanced’ IGCC operating at high-pressure, only one physical process is assessed: methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号