首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed the NO and SO2 removal in the non-thermal plasma discharge process combined with TiO2 photocatalyst. The non-thermal plasmas were generated by dielectric barrier discharge with glass beads as dielectric materials. The TiO2 thin films were coated on the glass beads uniformly without crack by a rotating cylindrical plasma chemical vapor deposition reactor. The NO and SO2 removal efficiencies obtained in non-thermal plasma–TiO2 photocatalysts hybrid system were higher than those in plasma process only, because of the additional removal of NO and SO2 by photocatalysts. The NO and SO2 removal efficiencies become higher, as applied peak voltage, pulse frequency and gas residence time increase, or as the initial NO and SO2 concentrations decrease. The hybrid system of non-thermal plasma and photocatalyst thin film on glass beads prepared by PCVD process is quite efficient method to remove NO and SO2.  相似文献   

2.
TiO2 is a suitable catalyst for potential photocatalytic processes, e.g., in wastewater treatment. For a technical realization of such processes, the application of immobilized TiO2 in a continuous process would be desirable. However, since UV radiation has a limited penetration depth into a packed bed of pure TiO2, supporting it on UV‐transparent glass beads offers the possibility to implement continuous photocatalytic processes in a fixed‐bed reactor. Considering this fact, glass beads were coated with TiO2 powder in a fluidized‐bed reactor. The coated glass beads with varying TiO2 layer thickness were tested in the photocatalytic degradation of methylene blue, and the influence of an addition of methyl cellulose during the coating process on the photocatalytic performance was investigated.  相似文献   

3.
TiO2 thin films were prepared by RF magnetron sputtering onto glass substrates and tungsten was deposited onto these thin films (deposition time 15-60 s) to form W-TiO2 bi-layer thin films. The crystal structure, morphology, and transmittance of these TiO2 and W-TiO2 bi-layer thin films were investigated. Amorphous, rutile, and anatase TiO2 phases were observed in the TiO2 and W-TiO2 bi-layer thin films. Tungsten thickness and annealing temperature had large effects on the transmittance of the W-TiO2 thin films. The W-TiO2 bi-layer thin films with a tungsten deposition time of 60 s were annealed at 200 °C-400 °C. The band gap energies of the TiO2 and the non-annealed and annealed W-TiO2 bi-layer thin films were evaluated using (αhν)1/2 versus energy plots, showing that tungsten thickness and annealing temperature had major effects on the transmittance and band gap energy of W-TiO2 bi-layer thin films.  相似文献   

4.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

5.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

6.
Anatase titanium dioxide (TiO2) photocatalytic thin films were directly formed on glass slide and commercial dental mirror substrate surfaces by a hydrolysis of titanium alkoxide, and the hydrophilicity, the degree of oxidizing power and the transparency of the anatase TiO2-coated substrate surfaces. The contact angles of water and the decomposition rates of methylene blue on the anatase TiO2 photocatalytic thin films improved with the increasing duration of a tetraethyl orthotitanate (TEOT) hydrolysis, but they hardly changed for the longer duration. The reflectance of anatase TiO2 photocatalytic thin films coated on glass slide substrate surfaces was higher as the duration of a TEOT hydrolysis increased. Similar tendencies concerning hydrophilicity and transparency were recognized in cases of commercial dental mirror substrate surfaces. A hydrolysis of titanium alkoxide obtained superhydrophilic and antibacterial treatments with excellent transparency on commercial dental mirror substrate surfaces.  相似文献   

7.
Fluidized bed chemical vapor deposition (FB-CVD) method using tetra iso-propoxide as a precursor of TiO2 was applied to achieve TiO2 coating onto various types of beads. The substrates of the beads included alumina, silica-gel, and glass, and these beads were of small diameter (ca. 1–2 mm). From our investigation of TiO2-coated surfaces of these beads, we observed formation of TiO2 coating down to ~35 nm in thickness. In addition, we found that both the type of the substrate and condition of coating process had effect on the surface morphology of coated beads. From combined studies of the surface morphology and the photocatalytic decomposition of methylene blue, we detected characteristic features of coated surface which were associated with high photocatalytic performance. Provided are the explanations to account for the high photocatalytic performance found for TiO2-coated beads of silica-gel substrate.  相似文献   

8.
Transparent TiO2 thin film photocatalysts were prepared on transparent porous Vycor glass (PVG) by an ionized cluster beam (ICB) method. The UV‐VIS absorption spectra of these films show specific interference fringes, indicating that uniform and transparent TiO2 thin films are formed. The results of XRD measurements indicate that these TiO2 thin films consist of both anatase and rutile structures. UV light (λ > 270 nm) irradiation of these TiO2 thin films in the presence of NO led to the photocatalytic decomposition of NO into N2, O2 and N2O. The reactivity of these TiO2 thin films for the photocatalytic decomposition of NO is strongly dependent on the film thickness, i.e., the thinner the TiO2 thin films, the higher the reactivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A carbon/TiO2 nanocomposite, which consists of carbon film with various sp3C content and TiO2 nanowire arrays, has been synthesized, in which the top surface of TiO2 nanowire arrays prepared using hydrothermal method on fluorine-doped tin oxide glass were coated with carbon thin films. The carbon thin films with a higher, medium and lower sp3C content were deposited by pulsed magnetic filtered cathodic vacuum arc deposition, plasma-enhanced chemical vapor deposition and magnetron sputtering deposition, respectively. The surface morphology and structure of TiO2 nanowire arrays were investigated by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The sp3C content in carbon films was characterized using Raman spectroscopy. The blood compatibility of the samples including the TiO2 nanowire arrays, carbon films and carbon/TiO2 nanocomposite was assessed by tests of platelet adhesion in vitro. Results showed that the carbon/TiO2 composite can effectively improve the anticoagulant function compared to the single materials. It is believed that the excellent blood compatibility of the carbon/TiO2 nanocomposite is attributed to a joint function of surface properties adjusted by nanowire arrays and electronic structure of carbon thin films.  相似文献   

10.
A series of titania thin films was prepared by chemical bath deposition (CBD) of TiCl3 on indium tin oxside (ITO) glass at room temperature, followed by calcinations at 500 °C for 4 h. The effect of cyclic deposition on phase composition, microstructure and electrical resistivity of TiO2 thin films was characterised using X-ray diffraction, scanning electron microscopy and four-point probe respectively. Results showed that TiO2 films produced by single deposition cycle were amorphous. In contrast, those produced by 5 and 6 deposition cycles were partly amorphous and partly crystalline with the formation of rutile. Both the film thickness and electrical resistivity increased with an increase in the number of deposition cycles.  相似文献   

11.
The effects of annealing temperature on the photocatalytic activity of nitrogen-doped (N-doped) titanium oxide (TiO2) thin films deposited on soda-lime-silica slide glass by radio frequency (RF) magnetron sputtering have been studied. Glancing incident X-ray diffraction (GIAXRD), Raman spectrum, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectra were utilized to characterize the N-doped TiO2 thin films with and without annealing treatment. GIAXRD and Raman results show as-deposited N-doped TiO2 thin films to be nearly amorphous and that the rutile and anatase phases coexisted when the N-doped TiO2 thin films were annealed at 623 and 823 K for 1 h, respectively. SEM microstructure shows uniformly close packed and nearly round particles with a size of about 10 nm which are on the slide glass surface for TiO2 thin films annealed at 623 K for 1 h. AFM image shows the lowest surface roughness for the N-doped TiO2 thin films annealed at 623 K for 1 h. The N-doped TiO2 thin films annealed at 623 K for 1 h exhibit the best photocatalytic activity, with a rate constant (ka) of about 0.0034 h−1.  相似文献   

12.
BACKGROUND: A continuous‐flow microwave photocatalytic reactor was set up consisting of a glass tube equipped with microwave powered mercury electrodeless discharge lamps (EDLs) coated with thin films of nanoporous titanium(IV) oxide. The effect of operational parameters on photocatalytic degradation of aqueous mono‐chloroacetic acid (MCAA) by a TiO2/UV/MW process was investigated. RESULTS: Studies were carried out at a relatively high concentration of MCAA (0.1 mol L?1), and revealed that reaction temperature and light intensity of the EDLs depend inversely on the flow rate, but that the 366 nm line intensity of EDL is directly proportional to the reaction temperature. The photodegradation of MCAA was enhanced by heating and significantly enhanced by air bubbling of the reaction mixture in the glass reservoir at laboratory temperature. The photocatalytic efficiency increased with the number of titania‐coated EDLs inserted in the glass tube reactor. CONCLUSIONS: It was found that the operational parameters (i.e. flow rate, reaction temperature, number of titania‐coated EDLs, and air bubbling) had important effects on degradation efficiency. The photocatalytic degradation of MCAA on thin films of titanium(IV) oxide in the continuous‐flow microwave photoreactor can be enhanced in the TiO2/UV/MW system. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Titanium oxide thin films were deposited on p-type Si(100), SiO2/Si, and Pt/Si substrates by plasma enhanced chemical vapor deposition using high purity Ti(O-i-C3H7)4 and oxygen. As-deposited amorphous TiO2 thin films were treated by rapid thermal annealing (RTA) in oxygen ambient, and the effects of RTA conditions on the structural and electrical properties of TiO2 films were studied in terms of crystallinity, microstructure, current leakage, and dielectric constant. The dominant crystalline structures after 600 and 800 ‡C annealing were an anatase phase for the TiO2 film on SiO2/Si and a rutile phase for the film on a Pt/Si substrate. The dielectric constant of the as-grown and annealed TiO2 thin films increased depending on the substrate in the order of Si, SiO2/Si, and Pt/ Si. The SiO2 thin layer was effective in preventing the formation of titanium silicide at the interface and current leakage of the film. TEM photographs showed an additional growth of SiOx from oxygen supplied from both SiO2 and TiO2 films when the films were annealed at 1000 ‡C in an oxygen ambient. Intensity analysis of Raman peaks also indicated that optimizing the oxygen concentration and the annealing time is critical for growing a TiO2 film having high dielectric and low current leakage characteristics.  相似文献   

14.
Titanium dioxide (TiO2) films on glassy carbon (GC) electrode surface were prepared by the liquid phase deposition (LPD) process for different deposition times. The morphological structure, interfacial property and electrocatalytic activity of as-prepared LPD TiO2 films on GC surface were studied by field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FE-SEM observation showed that the deposition time controlled the morphology of film on GC surface. With increasing deposition time, TiO2 formed nanoparticles at the initial 5-h stage and compact thick films after 20 h. Due to the semiconducting properties of TiO2, the LPD films inhibited the electron transfer process of [Fe(CN)6]3−/[Fe(CN)6]4− on GC by increasing the redox reaction peak potential separation of CV curve and electron transfer resistance of EIS. The inhibition was increased with TiO2 film thickness. Nevertheless, the onset reduction potential of maleic acid decreased with increasing LPD TiO2 film thickness while the cathodic and anodic currents increased, demonstrating the useful electrocatalytic activity of LPD TiO2 films.  相似文献   

15.
Unique visible-light-responsive TiO2 photocatalysts (λ>450 nm) were successfully developed by implantation of V ions into the TiO2 thin films prepared on a quartz substrate by an ionized cluster beam (ICB) deposition method. After V ions implantation into TiO2 thin film, the photocatalytic activity of the thin films for the decomposition of formic acid into CO2 and H2O was found to proceed efficiently under visible light irradiation longer than 450 nm. The TiO2 thin film photocatalysts were characterized by XRD, UV-vis, XPS, FE-SEM and AFM.  相似文献   

16.
The a-Si thin-film growth on particles in the rotating pulsed SiH4 plasma process was analyzed numerically. The evolutions of chemical concentrations (SiH4, SiHx, and polymerized negative ions) in the pulsed plasmas have been shown during the plasma-on and -off. During plasma-on, SiH4 is consumed by the electron impact dissociative reactions, but, during plasma-off, the disappearance reaction of SiH4 stops because the electrons disappear in the plasma reactor. During plasma-on, SiHx and are generated quickly by a fast dissociative reaction of SiH4, but, during plasma-off, SiHx disappears rapidly by a reaction with hydrogen and also by the deposition onto the reactor wall and particles, and is consumed quickly by fast neutralization reactions with the negative ions. The negative ions are polymerized by the reactions with SiH4 during plasma-on, but, disappear by neutralization reactions during plasma-off. The growth rate of the film thickness profile depends on the SiHx concentration because the particles grow with the SiHx deposition. As the plasma-on time increases or as the plasma-off time decreases, the thin film thickness on the particles increases more quickly with faster SiHx deposition onto them. A fraction of the particles falling down in the gas phase (WFP) increases as the rotation speed of the plasma reactor increases. As WFP increases, as the particle concentration decreases, or as the particle diameter decreases, the film thickness on the particles increases more quickly because the flux of SiHx toward the particles increases.The pulsed plasma process can efficiently reduce the growth of polymerized negative ions and particles, both of which are not good for high-quality thin films. We showed that the high-quality thin films on the particles can be prepared successfully by deposition of low mass chemical precursors by pulsed plasma processes.  相似文献   

17.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

18.
The article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2 thin films using dc dual magnetron (DM) sputtering in Ar + O2 mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5) targets of 50 mm in diameter. The substrate surface temperature Tsurf measured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency fr was investigated in detail. It was found that the increase of fr from 100 to 350 kHz leads to (a) an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aD of sputtered TiO2 films and (b) a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2 films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2 film deposited on a polycarbonate substrate are given.  相似文献   

19.
A photoreactor packed with glass beads coated by palladium nanoparticles-modified BiVO4 was tested and analyzed in phenol degradation under UV–Visible light. The photocatalytic activity of Pd-BiVO4 under visible light is higher than TiO2 under UV light, as we previously reported. In this work, we try to use the Pd-BiVO4 in a large scale by coating the glass beads with it, a potentially industrial-scale use. For comparison, a flat-plate reactor and a slurry reactor were also examined. The photocatalytic activity of Pd-BiVO4 in phenol degradation was found to be higher than that of TiO2 in all systems (slurry, flat-plate, and packed beads reactor [PBR]). Furthermore, PBR exhibited higher energy efficiency compared to the flat-plate reactor in phenol oxidation. The superior performance of this reactor is due primarily to the highly exposed catalyst surface area, high mass transfer coefficient, and effective delivery of both photons and reactants to the catalyst surfaces. © 2018 American Institute of Chemical Engineers AIChE J, 65: 132–139, 2019  相似文献   

20.
The adhesion phenomena of monodispersed barium sulfate (BaSO4) particles on gelatin-coated glass beads were evaluated using the packed column technique and compared with the same system in the absence of the protein.

Multilayer deposition was observed with the uncoated glass beads at pH 4, 5 and 6, while at pH 9, which is above the isoelectric point (pH ~ 6) of BaSO4 particles, monolayer deposition took place, even though the BaSO4 particles and glass beads bore the same sign of charge. At pH = 10, no uptake was observed on the glass beads, but the addition of 10?4 mol dm?3 BaCl2 induced multilayer deposition due to the adsorption of the Ba2+ cation on BaSO4 particles, which causes a reversal of their charge to positive.

The formation of multilayers was found to occur over a much wider pH range on the gelatin coated glass beads.

BaSO4 particles deposited in multilayers could not be removed from either glass beads or gelatin-coated glass beads by rinsing the loaded column with solutions of pH 11.5, but could be detached from monolayers on glass beads only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号