首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of reducing agents on the textural properties and bulk/surface phase compositions of a precipitated iron-manganese catalyst were investigated by N2-physisorption, X-ray photoelectron spectroscopy (XRD), Mössbauer effect spectroscopy (MES), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (LRS). Fischer–Tropsch synthesis (FTS) was performed in a slurry-phase continuously stirred tank reactor. The characterization results indicated that the hematite in the fresh catalyst was converted mainly to magnetite in H2 atmosphere without the formation of intermediate metallic iron. Large amounts of Fe3O4 and small amounts of ε′-Fe2.2C and χ-Fe2.5C were formed after syngas pretreatment. In contrast, CO activation led to the formation of large amounts of χ-Fe2.5C and carbonaceous species on the surface of magnetite. In the FTS reaction, the CO-activated catalyst presented the highest initial activity compared to the H2 and syngas-reduced catalysts, and remained unchanged in the activity following the transformation of iron carbides to Fe3O4. Furthermore, the FTS activity of the H2-reduced catalyst increased gradually accompanied with the conversion of magnetite to iron carbides. All of the results suggested that the formation of iron carbides (especially for χ-Fe2.5C) on the surface layers provides probably the active sites for FTS, whereas the Fe3O4 formed plays a negligible role in the FTS activity.  相似文献   

2.
An unpromoted ultrafine iron nano-particle catalyst was used for Fischer–Tropsch synthesis (FTS) in a CSTR at 270 °C, 175 psig, H2/CO = 0.7, and a syngas space velocity of 3.0 sl/h/g Fe. Prior to FTS, the catalyst was activated in CO for 24 h which converted the initial hematite into a mixture of 85% χ-Fe5C2 and 15% magnetite, as found by Mössbauer measurement. The activated catalyst results in an initial high conversion (ca. 85%) of CO and H2; however the conversions decreased to ca. 10% over about 400 h of synthesis time and after that remained nearly constant up to 600 h. Mössbauer and EELS measurement revealed that the catalyst deactivation was accompanied by gradual in situ re-oxidation of the catalyst from initial nearly pure χ-Fe5C2 phase to pure magnetite after 400 h of synthesis time. Experimental data indicates that the nucleation for carbide/oxide transformation may initiates at the center of the particle by water produced during FTS. Small amount of ?′-Fe2.2C phase was detected in some catalyst samples collected after 480 h of FTS which are believed to be generated by syngas during FTS. Particle size distribution (PSD) measurements indicate nano-scale growth of individual catalyst particle. Statistical average diameters were found to increase by a factor of 4 over 600 h of FTS. Large particles with the largest dimension larger than 150 nm were also observed. Chemical compositions of the larger particles were always found to be pure single crystal magnetite as revealed by EELS analysis. Small number of ultrafine carbide particles was identified in the catalyst samples collected during later period of FTS. The results suggest that carbide/oxide transformation and nano-scale growth of particles continues either in succession or at least simultaneously; but definitely not in the reverse order (in that case some larger carbide particles would have observed). EELS-STEM measurement reveals amorphous carbon rim of thickness 3–5 nm around some particles after activation and during FTS. Well ordered graphitic carbon layers on larger single crystal magnetite particles were found by EELS-STEM measurement. However the maximum thickness of the carbon (amorphous or graphitic) rim does not grow above 10 nm suggesting that the growths of particles are not due to carbon deposition.  相似文献   

3.
Rubidium promoted iron Fischer–Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. Mössbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was χ-Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, ?′-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.  相似文献   

4.
Fischer-Tropsch Synthesis (FTS) for olefin production from syngas was studied on Fe-Cu-K catalysts supported on ZSM-5 with three different Si/Al ratios. The catalysts were prepared by slurry-impregnation method of metallic components, and were characterized by BET surface area, XRD, hydrogen TPR and ammonia TPD. Fe-Cu-K/ZSM-5 catalyst with a low Si/Al ratio (25) is found to be superior to the other catalysts in terms of better C2-C4 selectivity in the FTS products and higher olefin/(olefin + paraffin) ratio in C2-C4 because of the facile formation of iron carbide during FTS reaction and also due to a larger number of weak acidic sites that are present in these catalysts.  相似文献   

5.
The effect of surface and bulk alkali (Na, K) promotions on the cobalt-oxide catalyst activity in soot oxidation was investigated. While surface promotion does not alter the cobalt spinel structure, the introduction of alkali into the bulk leads to the formation of layered cobaltates (revealed by XRD, Raman spectroscopy and XPS). The catalytic activity was determined using the temperature programmed oxidation of model soot (Printex 80), both in tight and loose contact conditions. The alkali bulk promotion is much more effective than surface promotion in soot oxidation, lowering the soot ignition temperature by 340 °C for the most active catalyst K0.25CoO2.  相似文献   

6.
《Catalysis communications》2007,8(11):1820-1824
It is well known that a typical precipitated iron catalyst was prepared by iron(III) nitrate (Fe(NO3)3). The modified iron catalyst was prepared by iron(II) sulfate in our laboratory. The results from catalytic performance tests showed that the iron catalyst prepared from iron sulfate (cat-S) has the higher activity for Fischer–Tropsch synthesis (FTS) than the catalyst prepared from iron nitrate (cat-N). The results from XRD of catalyst before use showed the difference definitely. The XRD patterns of these catalysts indicate that the main phase of cat-N is Fe2O3, whereas the phases of cat-S are a mixture of Fe2O3 and Fe3O4. It is considered that magnetite was directly formed during precipitation and contained in the catalyst before use enhances the activity for FTS.  相似文献   

7.
An extensive study of Fischer–Tropsch synthesis (FTS) on carbon nanotubes (CNTs)-supported bimetallic cobalt/iron catalysts is reported. Up to 4 wt.% of iron is added to the 10 wt.% Co/CNT catalyst by co-impregnation. The physico-chemical properties, FTS activity and selectivity of the bimetallic catalysts were analyzed and compared with those of 10 wt.% monometallic cobalt and iron catalysts at similar operating conditions (H2/CO = 2:1 molar ratio, P = 2 MPa and T = 220 °C). The metal particles were distributed inside the tubes and the rest on the outer surface of the CNTs. For iron loadings higher than 2 wt.%, Co–Fe alloy was revealed by X-ray diffraction (XRD) techniques. 0.5 wt.% of Fe enhanced the reducibility and dispersion of the cobalt catalyst by 19 and 32.8%, respectively. Among the catalysts studied, cobalt catalyst with 0.5% Fe showed the highest FTS reaction rate and percentage CO conversion. The monometallic iron catalyst showed the minimum FTS and maximum water–gas shift (WGS) rates. The monometallic cobalt catalyst exhibited high selectivity (85.1%) toward C5+ liquid hydrocarbons, while addition of small amounts of iron did not significantly change the product selectivity. Monometallic iron catalyst showed the lowest selectivity for 46.7% to C5+ hydrocarbons. The olefin to paraffin ratio in the FTS products increased with the addition of iron, and monometallic iron catalyst exhibited maximum olefin to paraffin ratio of 1.95. The bimetallic Co–Fe/CNT catalysts proved to be attractive in terms of alcohol formation. The introduction of 4 wt.% iron in the cobalt catalyst increased the alcohol selectivity from 2.3 to 26.3%. The Co–Fe alloys appear to be responsible for the high selectivity toward alcohol formation.  相似文献   

8.
Studies were conducted to investigate the effect of Pd on the Fischer–Tropsch Synthesis (FTS) selectivity, activity and kinetics as well as on the water–gas shift activity of an iron catalyst. Two palladium promoted catalysts (Pd0.002/Fe100 and Pd0.005/Fe100) were prepared from a base Fe100/Si5.1 (atomic ratio) catalyst. Results of FTS over the two palladium promoted catalysts were compared to those obtained from the K/Fe/Si base catalyst and a Cu/K/Fe/Si catalyst. The results indicate that Pd enhanced the FT activity while the selectivity for CO2 and CH4 changed little compared to the results for the base catalyst and the Cu promoted catalyst. Palladium promotion had a negative effect on the C2—C4 olefin to paraffin ratio. Pd promotion led to a higher WGS rate than the other two catalysts at high syngas conversions. A higher WGS rate compared to the FTS rate was obtained only for the Pd promoted catalysts. The FTS rate constant for the Pd promoted catalyst is higher than the base catalyst but lower than for the Cu promoted catalyst.  相似文献   

9.
The shape-defined Fe3O4 nanocatalysts such as spheres and polyhedrons prepared by a simple solvothermal method without calcination were applied in Fischer–Tropsch synthesis (FTS), which showed excellent catalytic activity and C5+ selectivity compared to the traditional Fe catalyst. Especially, the Fe3O4 nanocatalyst with nanospheres (FNS) displayed higher catalytic activity and C5+ selectivity (> 64%) than the Fe3O4 nanopolyhedrons (FNP). It was found that FNS was more favorable to the reduction and dispersion of iron species as well as formation of surface carbonaceous species (especially for χ-Fe5C2) compared to FNP, which provided more active sites for FTS and facilitated the product distribution shifting towards heavy hydrocarbons.  相似文献   

10.
The CH4-CO2 reforming was investigated in a fluidized bed reactor using nano-sized aerogel Ni/Al2O3 catalysts, which were prepared via a sol–gel method combined with a supercritical drying process. The catalysts were characterized with BET, XRD, H2-TPR and H2-TPD techniques. Compared with the impregnation catalyst, aerogel catalysts exhibited higher specific surface areas, lower bulk density, smaller Ni particle sizes, stronger metal-support interaction and higher Ni dispersion degrees. All tested aerogel catalysts showed better catalytic activities and stability than the impregnation catalyst. Their catalytic stability tested during 48 h reforming was dependent on their Ni loadings. Characterizations of spent catalysts indicated that only limited graphitic carbon formed on the aerogel catalyst, while massive graphitic carbon with filamentous morphology was observed for the impregnation catalyst, leading to significant catalytic activity degradation. An aerogel catalyst containing 10% Ni showed the best catalytic stability and the lowest rate of carbon deposition among the aerogel catalysts due to its small Ni particle size and strong metal-support interaction.  相似文献   

11.
《Ceramics International》2017,43(15):11902-11906
A promising fabrication method of bulk porous graphitic materials is based on consolidation of metal-amorphous carbon powder mixtures, in which the metal serves as both a graphitization catalyst and a removable space holder. In this work, iron was evaluated for this purpose. The phase formation and evolution in a carbon-rich iron-amorphous carbon mixture during Spark Plasma Sintering (SPS) and subsequent annealing was studied to reveal the peculiarities of the low-temperature catalytic graphitization process determined by the transformations of the iron catalyst. Mixtures of carbon black with iron of the Fe-20 wt%C composition were ball milled, Spark Plasma Sintered at 600–900 °C for 5 min and further annealed at 800 °C for 2 h. During the SPS, iron carbide Fe3C formed, while the free carbon remained poorly graphitized. In the compact sintered at 900 °C, Fe3C was the only iron-containing phase and metallic iron was not detected. For conducting structural studies of the free carbon by X-ray diffraction and Raman spectroscopy, iron was dissolved from the sintered compacts in HCl solution. It was found that during annealing, the graphitization degree increased only in the compacts that still contained free (metallic) iron. These results suggest that Fe3C does not catalyze graphitization in a carbon-rich mixture of iron and carbon black making the presence of residual (metallic) iron crucial for the advancement of catalytic graphitization during annealing.  相似文献   

12.
刘润雪  刘任杰  徐艳  吕静  李振花 《化工进展》2016,35(10):3169-3179
综述了近十年来铁基催化剂在费托合成反应中的研究进展,探讨了铁基催化剂活性组分的确定及影响铁基催化剂活性组分的因素,对比了3种催化剂制备方法(熔融法、沉淀法、负载法)和5种催化剂载体(氧化物、分子筛、碳材料、双孔材料和核壳材料)对费托合成反应性能的影响,从反应活性、选择性和反应稳定性3个方面阐述了助催化剂在费托合成反应中的作用。分析认为:碳化铁是铁基费托合成催化剂的活性组分;在铁基催化剂的制备过程中,选择适宜的制备方法、载体、助催化剂,可以达到提高费托合成反应活性、目的产物选择性和反应稳定性的效果。提出合成特定结构碳化铁、进一步研究铁基催化剂反应机理仍是未来研究的重点。  相似文献   

13.
The effect of adding alkali metals (Li, Na, K) to a CaO–MgO mixture, on the catalytic combustion of carbon black (CB), a model compound for soot, was studied. Catalysts were prepared by the Sol–Gel method and characterized by surface (BET surface area, XPS, DRIFTS) and bulk (AAS, XRD and TPR) techniques. Samples with a 4:1 catalyst-CB ratio were subjected to catalytic oxidation in a thermo-gravimetric apparatus and the temperature Tm, at which combustion occurs at its maximum rate, was recorded for comparison of catalytic activity. The addition of alkali metals (Li, Na, K) over the CaO–MgO mixture significantly increased the catalytic activity, due to the formation of surface oxygenated species that enhanced the oxidizing properties of the catalyst surface. That activity for CB combustion increases with the atomic number of the alkali metal contained in the catalyst. The presence of alkali metals also diminished the amount and stability of carbonates formed on the catalyst. The K-containing catalyst showed the largest activity for the catalytic CB combustion, because it shows the largest capacity to enrich its surface with α-oxygen type and promotes best the surface dissociation of that oxygen. Furthermore, surface-adsorbed OH and carbonate groups that disable the active sites and prevent the oxygen adsorption and dissociation, were less abundant and desorbed at lower temperatures, showing to be less stable on this K-containing catalyst.  相似文献   

14.
A series of γ-Al2O3 supported molybdenum carbides [carbided Mo/γ-Al2O3 (MCS), Co-Mo/γ-Al2O3 (CMCS), and Ni-Mo/γ-Al2O3 (NMCS)] and unsupported molybdenum carbide (MCUS) were prepared by the temperature-programmed carburization of their corresponding molybdenum nitrides with 20 % CH4/H2. XRD and SEM studies show that unsupported molybdenum carbide catalyst possesses a typical crystalline Mo2C (FCC structure), while supported molybdenum carbide catalysts possess highly dispersed surface molybdenum carbide species on an alumina oxide support. The results of dibenzothiophene (DBT) hydrodesulfurization over molybdenum carbide catalysts show that the reactivity is strongly dependent on the type of catalyst. Supported molybdenum carbide catalysts possess a higher reactivity than the unsupported molybdenum carbide catalyst. In addition, Co or Ni promoted, supported molybdenum carbide catalyst possesses a higher reactivity than the unpromoted, supported molybdenum carbide catalyst. The reactivity, which is also dependent on the reaction conditions, increases with increasing reaction temperature and pressure and contact time. The CO uptakes of the molybdenum carbide catalysts correlate well with overall activity (total rate) for DBT hydrodesulfurization. The major reaction product is biphenyl, with cyclohexylbenzene next in abundance regardless of the type of catalysts and reaction conditions. It was also found that the molybdenum carbide catalysts exhibit stable initial reactivity due to the stable and weak acidic characteristics of these catalysts.  相似文献   

15.
费托合成(FTS)对天然气、煤炭和生物质向清洁运输燃料和增值化学品的转化至关重要。传统上,用于FTS的负载型铁催化剂主要是以氧化铝和二氧化硅为载体。然而,金属与载体的相互作用阻碍了活性相碳化铁的形成,使得催化剂活性较低。本文通过乙二胺四乙酸(EDTA)络合浸渍制备了Fe/Al2O3催化剂,通过带正电荷的羟基(OH2+)与[Fe(EDTA)]-配合物阴离子之间的库仑相互作用来提高氧化铝载体上铁物种的分散度。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、比表面积(BET)、原位红外(In-situ IR)等手段进行表征分析。结果表明,添加EDTA有助于增强Fe的抗烧结性。在煅烧络合浸渍制备样品的过程中,EDTA可以分解为具有还原性质的有机小分子,将催化剂中的铁物种还原为Fe2+,有利于催化剂的还原;更多活性中心增强了催化剂对CO的吸附量。原位红外实验表明,EDTA辅助制备的催化剂更容易富集活性物种,从而提高CO的转化率。调节体系中碱金属钠的含量改善了烃内产物分布。在较低的氢碳比(H2/CO=1/1)下,EDTA络合制备的Fe-Na/Al2O3催化剂显示出高的CO转化率(88.5%)以及最大的C2~C4=和C5~C11选择性,总选择性达71.2%。  相似文献   

16.
A novel spherical-shaped iron catalyst (100Fe/5Cu/6K/16SiO2) with 0.24 wt% of SO42− loading for slurry Fischer–Tropsch synthesis (FTS) was prepared by spray-drying using cheap industrial iron resource FeSO4 · 7H2O. The characterization results from BET, X-ray diffraction and temperature-programmed-reduction (H2-TPR) show that the sulfate-containing catalyst exhibited higher surface area, more dispersed α-Fe2O3 phase and more facility of reduction than a sulfate-free catalyst. The FTS performance in a fixed bed reactor and in a continuous stirred tank reactor indicates that SO42− species acts as a promoter by increasing catalyst activity and modifying hydrocarbon selectivity to heavier products.  相似文献   

17.
The consecutive phase transformations of a precipitated spray-dried iron-based catalyst for slurry Fischer–Tropsch synthesis (FTS) during activation and reaction process were investigated using Mössbauer effect spectroscopy (MES). It was found that the fresh iron catalyst activation in situ using syngas resulted in the formation of a mixture of iron carbides and superparamagnetic (spm) phases. The relatively small size of fresh iron crystallites was an important factor in the formation of ε′-Fe2.2C. During the reduction process, Fe3+ (spm) phase was easier to be reduced than α-Fe2O3 phase. Fe3O4 was not an active phase for FTS. The transformation of α-Fe2O3 into Fe3O4 before carbides formation was necessary to obtain FTS activity of the iron catalyst. There was a correlation between the content of CH4 in tail gas and the amount of iron carbides during activation. It was found that carbonization was the dominating phase transformation when the FTS reaction temperature increased from 250 °C to 270 °C. However, the oxidization was more remarkably at higher FTS reaction temperature. χ-Fe5C2 was the main iron phase at lower reaction temperature. The changes in the bulk compositions resulted in the variation in catalyst activity during FTS. The results of this study showed that the active phase for FTS was a mixture of carbides and corresponding amounts of superparamagnetic phase.  相似文献   

18.
Asao Ōya  Sugio Ōtani 《Carbon》1979,17(2):125-129
Phenolic resin containing finely dispersed Ca(SCN)2 was cured, then heat treated in the range 500–2600°C in order to examine the catalytic graphitization action. The results are compared with those obtained with bulky Ca, Ca compounds and Ca vapor reported previously. Regardless of the kind or particle size of the Ca source, CaC2 is formed as an intermediate in the catalytic graphitization process; and the carbide particle size is roughly proportional to that of the Ca source. The catalytic action is affected by the carbide catalyst particle size as follows: Bulky catalyst forms graphitic carbon; finely dispersed catalyst forms specific turbostratic carbon; and hyperfine catalyst, resulting from Ca vapor, accelerates the gradual graphitization of the entire carbon.  相似文献   

19.
Reza M. Malek Abbaslou 《Fuel》2011,90(3):1139-1144
Our studies on the application of carbon nanotubes (CNTs) as support have shown that iron catalysts supported on CNTs are active and selective catalysts for Fischer-Tropsch synthesis (FTS). However, these catalysts experienced deactivation as a result of active site agglomerations. In order to control the agglomeration of active site, which is an important step in developing a novel catalyst supported on carbon-based supports, the effects of Mo promotion on deactivation behavior of iron catalysts supported on CNTs were studied. In this work the properties and catalytic performance of unpromoted iron catalysts were compared with a promoted catalyst with different Mo contents (0.5, 1, 5, and 12 wt%). Based on TEM and XRD analyses, promotion of the catalysts with Mo resulted in production of smaller metal particles compared to the unpromoted iron catalyst. According to XRD analysis, Mo species were deposited in their amorphous structure. TPR analyses showed that addition of Mo increased reduction temperature significantly. Based on TEM and XRD analyses, the particle size of the iron oxides in the unpromoted catalyst increased from 16 to 25 nm under FT operating conditions, while the particle size of the iron oxide in the Mo promoted catalysts (∼12-14 nm) did not change noticeably under the same operating conditions. Activity, selectivity and stability of the unpromoted and Mo promoted catalysts showed that addition of 0.5-1 wt% Mo resulted in a more stable catalyst. Higher contents of Mo (5 and 12 wt%) decreased the activity of the catalysts due to catalytic site coverage and lower extent of reduction. Mo promotion (0.5-12 wt%) increased the selectivity of the catalysts toward lighter hydrocarbons. The promotion of the iron catalyst with 0.5 wt% of Mo stabilized the activity of the catalyst with minimal increase (2%) in methane selectivity.  相似文献   

20.
We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer?CTropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H2 and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号