首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
制备一种新型的ChS/CSA/nHAP原位复合纳米骨修复支架,并对其进行细胞学研究。利用原位复合及冷冻干燥技术制备ChS/CSA/nHAP原位复合支架;采用乳鼠成骨细胞建立支架的体外评价模型,MTT法细胞增殖测定、细胞蛋白含量和碱性磷酸酶活性测定探究支架的细胞相容性及对成骨细胞功能的影响。结果表明:低结晶度的碳酸化nHAP均匀地分布在ChS/CSA有机基质中,支架具有类骨的微孔结构,可促进成骨细胞增殖、分化。因此ChS/CSA/nHAP原位复合支架具有良好的细胞相容性,有望成为一种新型骨组织修复材料。  相似文献   

2.
对Fe-17Cr-7Ni采用77%冷轧和700℃退火100 s工艺获得纳米晶(100 nm)/超细晶(100~500 nm)和部分粗晶(1μm)组成的微米/纳米复合结构奥氏体组织,其平均晶粒尺寸为500 nm。通过拉伸实验研究了微米/纳米复合结构奥氏体不锈钢力学性能、形变机制和应变硬化行为。结果表明这种微米/纳米复合结构奥氏体不锈钢屈服和抗拉强度分别为939 MPa和1098 MPa,伸长率高达38.8%。分析应变硬化率曲线表明拉伸过程中形变分为四个区间。结合透射电镜组织观察结果,发现形变过程中粗晶奥氏体先转化为形变马氏体,随后纳米晶/超细晶奥氏体转变为形变孪晶,表明这种高强度高塑性微米/纳米复合结构奥氏体不锈钢形变机制为TWIP和TRIP复合形变机制。  相似文献   

3.
采用真空热压工艺制备了添加纳米ZrO2和微米WC的Ti(C,N)基纳米复合金属陶瓷材料,并研究了材料的力学性能与微观结构。结果表明:在纳米ZrO2添加量为5%、微米WC添加量为9.6%(质量分数,下同)时,Ti(C,N)基纳米复合金属陶瓷材料的综合力学性能较好,抗弯强度为1014MPa,断裂韧性为7.25MPa·m1/2,硬度为15.57GPa,其抗弯强度和断裂韧性比未添加纳米ZrO2与微米WC的Ti(C,N)基金属陶瓷材料分别提高了3.5%和18.1%。材料断裂模式为以穿晶断裂为主的穿晶/沿晶断裂混合模式。"晶内型"纳米结构弥散增韧、纳米ZrO2相变增韧以及裂纹桥联、裂纹偏转是其主要的增韧补强机理。  相似文献   

4.
为获得高强度的微米孔径多孔铝,通过真空压力烧结溶解工艺制备微米孔径多孔铝,对制备过程、微米孔径多孔铝的强度及渗透性能进行研究。结果表明:真空环境下的压力烧结可明显促进铝粉烧结,提高微米孔径多孔铝的抗弯强度;在压制压力500 MPa、烧结温度650℃、烧结时间2 h以及烧结压力150~200 MPa条件下可获得孔隙率44%~61%、平均孔径55~230μm的多孔铝;随着孔隙率和平均孔径的提高,微米孔径多孔铝的相对渗透系数增大;与尺寸相同、孔结构相似的多孔不锈钢相比,微米孔径多孔铝具有较好的渗透性能和较高的耐压破坏比强度。  相似文献   

5.
通过冷冻铸造和热氧化法制备一种新型兼具抗菌功能和良好骨整合性能的纳米针状表面改性仿生多孔钛植入体。分析和表征仿生多孔钛植入体的孔隙形貌和尺寸、力学性能和体外成骨性能。结果表明:当控制冷冻铸造工艺中浆料中钛粉体积比为10%时,多孔试样的孔隙度为(58.32±1.08)%、孔径为(126.17±18.64)μm、压缩强度为(58.51±20.38)MPa、弹性模量为(1.70±0.52)GPa。在1200°C烧结1 h,多孔试样的孔隙度为(58.24±1.50)%、孔径为(124.16±13.64)μm、压缩强度为(54.77±27.55)MPa、弹性模量为(1.63±0.30)GPa。通过热氧化方法在多孔钛植入体试样的孔隙表面制备出均匀分布的纳米针状结构。通过对工艺的优化,制备出具有良好孔隙形貌和尺寸,同时具备良好力学性能和体外成骨性能的纳米针状表面改性仿生多孔钛植入体,具有重要的临床应用前景。  相似文献   

6.
采用粉末冶金工艺制备微米多孔Cu-Zn合金前驱体,进而脱合金制备微纳米多孔铜。首先研究了烧结温度对前驱体合金微观结构的影响,然后对比了不同前驱体在不同浓度盐酸溶液中脱合金后的相组成和微观形貌,最后分析了前驱体合金在脱合金过程中的电化学行为。结果表明,以粉末冶金法与脱合金法相结合,可制备出微纳米双级多孔铜。不同烧结温度会造成前驱体合金的物相含量和孔结构发生变化,进而造成其脱合金过程的显著差异。Cu_(30)Zn_(70)前驱体包含Cu_5Zn_8与CuZn_5两相,脱合金时CuZn_5相优先被腐蚀;而Cu_(50)Zn_(50)前驱体仅含CuZn相,腐蚀速率更慢。在0.1mol/L腐蚀液中,试样不能完全脱合金;腐蚀液浓度增大至0.5 mol/L时,前驱体中的Zn完全脱去,微米级韧带由纳米多孔结构构成,其微米孔孔径为3.02~3.68μm,纳米孔孔径为157~183 nm。  相似文献   

7.
目的研究多孔磷酸钙骨组织工程支架的表面微纳米化改性。方法通过双氧水发泡法制备多孔磷酸钙骨组织工程支架,利用水热法对材料进行微纳米化表面改性。通过扫描电镜观察材料的显微结构,通过X射线衍射仪分析测试材料改性层相成分。结果材料改性处理后,孔隙率为(63±8)%,大孔孔径为(310±30)μm。材料表面及内孔壁生成羟基磷灰石微纳米晶粒或晶须,晶须长20~40μm,直径为100~300 nm。结论多孔磷酸钙陶瓷材料的内外表面经水热法处理微纳米化表面改性后,材料性能得到提升。  相似文献   

8.
以Ag_(30)Zn_(70)合金为原料,通过调控脱合金电势及电流的2种电化学脱合金方法制备纳米多孔Ag材料。结果表明,脱合金电位或电流对纳米多孔Ag的成分、结构及孔径尺寸有重要影响。通过在2.5 mA/cm2电流密度下脱合金处理6000 s后可获得孔径约为80 nm的双连续纳米多孔Ag结构。循环伏安实验结果表明,纳米多孔Ag在0.5 mol/L的KOH溶液中对甲醛有良好的催化和检测性能,归因于纳米多孔结构中较优的纳米多孔孔径和Ag韧带的尺寸匹配。具有更小尺寸孔径的纳米多孔Ag有着更高的甲醛催化和检测性能。孔径约为80 nm的纳米多孔Ag在10~100 mmol/L浓度范围内的甲醛检测灵敏度达到0.22 mA·cm~(-2)·(mmol·L-1)-1;在含有100 mmol/L HCHO的0.5 mol/L KOH溶液中的催化峰值电流密度达到25.0 mA/cm2。  相似文献   

9.
研究了淬火温度对高Ti低合金耐磨钢组织转变、析出相和力学性能的影响,并分析了组织演变和力学性能变化的原因。结果表明:试验钢经不同温度淬火和200 ℃回火后的组织均为高位错密度板条马氏体;析出相尺寸主要为微米-亚微米-纳米三种尺度,微米级析出相呈杆棒状,亚微米以及纳米析出相呈球状,马氏体板条上分布着细小的(Ti, Mo)C析出相。随着淬火温度的升高,试验钢的屈服强度、抗拉强度和维氏硬度均先升高后降低,均在920 ℃时有最大值,分别为1248 MPa、1535 MPa和434 HV,此时伸长率为10.0%。随淬火温度升高,纳米级析出相逐渐回溶,数量减少且尺寸逐渐长大,沿轧制方向被压扁拉长的原奥氏体晶粒尺寸以及马氏体板条块尺寸略有增大,但马氏体板条宽度却无明显长大。大量的弥散分布的5~10 nm的(Ti, Mo)C粒子是促进耐磨钢硬度升高的主要因素。细小的(Ti, Mo)C析出相逐渐长大以及原奥氏体晶粒的增大都不利于耐磨钢硬度的提高。  相似文献   

10.
采用粉末冶金真空热压烧结工艺制备了纳/微米双尺度Si C颗粒增强的Al-Si复合材料(4%nm+15%μm SiC/Al-Si),分析测试了其组织、硬度、耐磨性及磨损特征,并与纳米Si C颗粒增强复合材料(4%nm SiC/Al-Si)及微米SiC颗粒增强复合材料(15%μm SiC/Al-Si)进行了对比研究。结果表明:微米SiC颗粒均匀分布在基底中,颗粒边缘与基体接触较为紧密,无明显反应物生成;纳/微米双尺度颗粒增强复合材料的硬度高于微米颗粒增强及纳米颗粒增强的复合材料,其硬度值为76.24 HV,比基体提高了35.13%;纳/微米双尺度颗粒增强铝基复合材料的耐磨性高于微米颗粒增强及纳米颗粒增强的复合材料,其磨损量比基体减少43%;纳/微米双尺度颗粒增强铝基复合材料的磨损表面较为平坦,表现为磨粒磨损特征。  相似文献   

11.
以纳米TiN和亚微米SiC粉体为原料,采用湿法球磨和喷雾干燥技术制备了均匀分布的SiC/TiN(np)纳米复合粉体,并通过无压烧结工艺制备出SiC/TiN(np)纳米复合陶瓷,研究了纳米TiN颗粒对SiC材料显微结构和力学性能的影响.研究结果表明:纳米TiN的引入抑制了SiC晶粒的生长,材料的断裂方式以沿晶断裂为主,裂纹产生偏转和分叉,使材料的抗弯强度、硬度和断裂韧性分别达到557 MPa、21 GPa和6.6 MP·am0.5.  相似文献   

12.
基于复合材料的观点建立纳米/微米Cu细观力学研究模型,采用有限元数值模拟技术对纳米/微米Cu的力学性能进行数值模拟,分析纳米/微米晶的分布、体积分数和形状对纳米/微米Cu强度和塑性的影响。结果表明:与层状分布相比,立方/球状密封分布的纳米/微米Cu强度和塑性均较大,其塑性随微米晶增韧相体积分数的增大而增大,而屈服强度则逐渐降低;随微米晶增韧相形状因子(有效长径比)的增大,纳米/微米Cu的力学性能表现出明显的各向异性。  相似文献   

13.
采用反应熔渗工艺,在1200℃、真空环境下将熔融态Zr2Cu合金渗入多孔Cf/C基材制得Cf/ZrC复合材料。结果表明,材料中ZrC含量为(43.8±1.3)%(体积分数,下同),材料弯曲强度为(105.7±5.3)MPa,弹性模量为(64.3±2.8)GPa;ZrC生长机制为"溶解-析出"机制:C基体逐步溶解在Zr-Cu熔液中并形成C-Zr-Cu固溶体,C浓度饱和后逐步析出ZrC纳米晶核,随即通过晶粒融合和元素扩散使晶粒迅速长大;Cf/ZrC复合材料具有优异的抗烧蚀性能,其质量烧蚀率和线烧蚀率分别为(0.0039±0.0008)g/s和(0.0023±0.0012)mm/s。  相似文献   

14.
开展了不同温度、压力和时间条件下微米厚Al片和微米厚U片的真空热压扩散连接实验,并对界面层进行了显微结构分析、元素能谱分析和纳米压痕测试。获得了U-Al机械结合无扩散层的工艺参数:350℃/63 MPa/1 h。保温1 h条件下,U-Al扩散层均匀化的工艺参数为400℃/80 MPa,扩散均匀情况下扩散层成分主要是UAl_2。  相似文献   

15.
采用含纳米WC颗粒的WC-12Co粉末,通过空气助燃超音速火焰喷涂系统(AC-HVAF)制备了耐磨涂层。研究了涂层相组成、微观结构、涂层硬度、断裂韧性和耐磨损性能。X射线衍射分析结果表明WC为涂层主相,未发现其他失碳分解产物。涂层孔隙率低于1%,晶粒尺寸为80~100 nm,涂层磨光表面硬度(HV_(0.3))高达19 403 MPa,横截面硬度高达17 410 MPa。使用WC硬质球为摩擦副,载荷15 N,工件转速1198 r/min干磨条件下,纳米结构涂层的平均失重比微米结构涂层降低40%,且纳米结构涂层摩擦系数为0.26~0.28(微米结构涂层:0.25~0.4),因此纳米结构涂层具有更加优异的耐磨性能。  相似文献   

16.
亚微米晶铜中孪晶对位错储存能力的影响   总被引:1,自引:0,他引:1  
郭金宇  卢秋虹  卢磊 《金属学报》2006,42(9):903-908
利用电解沉积技术制备出系列亚微米晶纯铜样品,并在样品中引入不同密度的纳米孪晶.室温轧制具有不同孪晶密度的纯铜样品,使样品中储存大量位错.结果表明,具有高密度纳米孪晶结构的纯铜样品,40%轧制变形可使其屈服强度从690MPa增加到850MPa;而无孪晶的亚微米铜样品的屈服强度在同样轧制变形条件下只从230MPa增加到330MPa.这表明具有高密度纳米孪晶结构的纯铜样品具有很高的位错储存能力.  相似文献   

17.
以微米Al_2O_3为主要原料,以纳米ZrO_2和TiC作为添加剂,以微米Y_2O_3粉作为烧结助剂,采用热压烧结工艺制备了氧化铝基复合金属陶瓷模具材料。分析了样品的抗折强度、硬度以及断裂韧性等性能,采用现代材料测试手段对最佳烧结样品的显微结构进行了分析。结果表明,最佳烧结温度为1660℃;当微米Al_2O_3添加量为74wt%,纳米ZrO_2为18wt%、纳米TiC为6wt%以及微米Y_2O_3粉添加量为2wt%时,所制备的氧化铝基复合金属陶瓷模具材料性能最佳,抗折强度912.78 MPa,硬度19.856 GPa,断裂韧性5.84 MPa·m1/2。  相似文献   

18.
以溶胶凝胶法合成的亚微米级和市售微米级ZrB_2粉体为原料,B4C和Mo为烧结助剂,在氩气气氛下,常压烧结制得ZrB_2-SiC复相超高温陶瓷材料.研究结果表明,亚微米级ZrB_2超细粉体的加入对ZrB_2-SiC复相陶瓷的常压烧结致密化有一定的促进作用,但对材料性能的影响不太明显.当超细粉体占到粉体质量的30%时,材料的相对密度约为97%.复相材料的三点抗弯强度为(327±56) MPa,弹性模量为(365±30) GPa,维氏硬度和断裂韧性分别为(12.30±0.75) GPa和(3.39±0.35) MPa·m~(1/2).另外,从材料的SEM照片明显看出,在压痕棱角尖端出现裂纹分叉现象,同时在裂纹延伸过程中发生偏转,断裂模式多为穿晶断裂,较少为沿晶断裂.  相似文献   

19.
通过拉伸测试和显微分析方法研究搅拌摩擦焊Al-5.50Mg-0.45Mn和Al-5.50Mg-0.45Mn-0.25Sc-0.10Zr(质量分数,%)合金的显微组织和力学性能。结果表明,Al-Mg-Mn接头的屈服强度、抗拉强度和伸长率分别为(191±3) MPa、(315±1) MPa和(4.8±1.9)%,Al-Mg-Mn-Sc-Zr接头的分别为(288±5) MPa、(391±2) MPa和(3.4±1.0)%。相比Al-Mg-Mn接头,Al-Mg-Mn-Sc-Zr接头晶粒更细小、平均取向差角更低、小角度晶界百分数更高。两种接头的断裂位置均位于焊核区(WNZ),在该“最薄弱微区”内,Al3(Sc1-xZrx)纳米粒子的平均尺寸为(9.92±2.69) nm,可提供有效奥罗万和晶界强化,使Al-Mg-Mn接头的屈服强度提高97 MPa。  相似文献   

20.
以氧化石墨烯(GO)为原料,利用液相原位化学还原方法制备了还原氧化石墨烯/铜(r GO-Cu)复合粉末,其中球状纳米铜颗粒均匀生长于石墨烯表面。随后将r GO-Cu复合粉末和微米级的纯铜粉末均匀混合,采用等离子火花烧结方法制备成r GO-Cu/Cu复合块体材料。结果显示:相比同种方法制备的纯铜,该新材料的强度大幅提升。屈服强度从95 MPa提高到了159 MPa;抗拉强度从209 MPa提高到了260 MPa。与此同时,伸长率和导电率分别保持在50%和97.3%IASC的高水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号