首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magneto immunoassay-based strategies for the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) related to malaria are described for the first time by using magnetic micro- and nanoparticles. The covalent immobilization of a commercial monoclonal antibody toward the HRP2 protein in magnetic beads and nanoparticles was evaluated and compared. The immunological reaction for the protein HRP2 was successfully performed in a sandwich assay on magnetic micro- and nanoparticles by using a second monoclonal antibody labeled with the enzyme, horseradish peroxidase (HRP). Then, the modified magnetic particles were easily captured by a magneto sensor made of graphite-epoxy composite (m-GEC) which was also used as the transducer for the electrochemical detection. The performance of the immunoassay-based strategy with the electrochemical magneto immunosensors was successfully evaluated and compared with a novel magneto-ELISA based on optical detection using spiked serum samples. Improved sensitivity was obtained when using 300 nm magnetic nanoparticles in both cases. The electrochemical magneto immunosensor coupled with magnetic nanoparticles have shown better analytical performance in terms of limit of detection (0.36 ng mL(-1)), which is much lower than the LOD reported by other methods. Moreover, at a low level of HRP2 concentration of 31.0 ng mL(-1), a signal of 15.30 μA was reached with a cutoff value of 0.34 μA, giving a clear positive result with a non-specific adsorption ratio of 51. Due to the high sensitivity, this novel strategy offers great promise for rapid, simple, cost-effective, and on-site detection of falciparum malaria disease in patients, but also to screen out at-risk blood samples for prevention of transfusion-transmitted malaria.  相似文献   

2.
An immunosensor using a long-period grating (LPG) was used for sensitive detection of antibody-antigen reactions. Goat anti-human IgG (antibody) was immobilized on the surface of the LPG, and detection of specific antibody-antigen binding was investigated. This sensor operates using total internal reflection where an evanescent field interacts with bound antibody immobilized over the grating region. The reaction between antibody and antigen altered the LPG transmission spectrum and was monitored in real time as a change in refractive index, thereby eliminating the need for labeling antigen molecules. Human IgG binding was observed to be concentration dependent over a range of 2-100 microg mL-1, and equilibrium bound antigen levels could be attained in approximately 5 min using an initial rate determination. Binding specificity was confirmed using human interleukin-2 and bovine serum albumin as controls, and nonspecific adsorption of proteins did not significantly interfere with detection of binding. Antigen detection in a heterogeneous protein mixture and in crude cell lysate from Escherichia coli was also confirmed. Moreover, regeneration of the LPG surface via diethylamine treatment resulted in approximately 80% removal of bound antigen. Subsequently, fibers reexposed to antigen retained greater than 85% of the initial signal after five consecutive regeneration cycles.  相似文献   

3.
The role of the solution environment for a light-scattering, latex-particle-enhanced, homogeneous immunoassay of C-reactive protein (CRP) has been investigated in order to assess and optimize the immunoagglutination response. Latex particles of 50-170-nm sizes were covalently coupled with an IgG polyclonal antibody and subjected to an extensive optimization regime. This consisted of conditions responsible, in different degrees, for the principal attractive/repulsive forces affecting both colloidal stability and the antibody/antigen interaction: particle size, antibody concentration, ionic strength and species, pH, and amino acid chemistry of the particle surface. Careful control of these parameters was found to be necessary to achieve the desired effects of balancing high colloidal stability in the absence of antigen but promoting a rapid, sensitive, and dose-dependent agglutination with pathological serum samples. In addition, the estimation of fundamental properties governing intermolecular interaction (i.e. the "Hamaker" constant and critical coagulation concentration) was attempted to order to investigate a simple, practical means of defining a colloidal/immunoassay system under "real conditions" as well as "real time". It is concluded that because each antibody system is unique, a similar optimization should be performed in diagnostic immunoassays of this type to maximize their clinical utility.  相似文献   

4.
研究了以霍乱毒素B亚基为载体的重组疟疾多价抗原的DNA疫苗在恒河猴中的免疫原性及对相应疟原虫感染的免疫保护作用。结果表明:DNA疫苗免疫恒河猴后,用1.25*10^8个食蟹疟子孢子攻击,对照绷带人动物在攻击后14天左右全部感染,感染持续34天以上;DAN疫苗组的5只动物一直到攻击后60天,没有感染。另外,还检测了免疫后不同时间各组的免疫应答水平,对照组相比,DNA疫苗组免疫2次后即产生了较高水平的  相似文献   

5.
Liu YM  Mei L  Liu LJ  Peng LF  Chen YH  Ren SW 《Analytical chemistry》2011,83(3):1137-1143
This technical note describes a new chemiluminescence immunoassay hyphenated to capillary electrophoresis (CE-based CL-IA) with gold nanoparticles (AuNPs) technique for biological molecules determination. AuNPs were used as a protein label reagent in the light of its excellent catalytic effect to the CL reaction of luminol and hydrogen peroxide. AuNPs conjugate with antibody (Ab) to form tagged antibody (Ab*), and then Ab* link to antigen (Ag) to produce an Ab*-Ag complex by a noncompetitive immunoreaction. The mixture of the excess Ab* and the Ab*-Ag complex was baseline separated and detected within 5 min under the optimized conditions. This new protocol was evaluated with human immunoglobulin G (IgG) as the target molecule. The calibration curve of IgG was in the range of 0.008-5 μg/mL with a correlation coefficient of 0.995. The detection limit (S/N = 3) of IgG was 1.14 × 10(-3) μg/mL (7.1 pmol/L, 0.39 amol). The proposed AuNPs enhanced CE-based CL-IA method was successfully applied for the quantification of IgG in human sera from patients. It proves that the present method could be developed into a new and sensitive biochemical analysis technique.  相似文献   

6.
We have demonstrated the utility of a self-contained extraction device for the selective isolation, purification, and concentration of the malaria diagnostic protein biomarker Plasmodium falciparum histidine-rich protein II (pfHRPII) from human plasma and whole blood. The extraction cassette consists of a small-diameter tube containing a series of preloaded processing solutions separated by mineral oil valves. Nickel(II) nitrilotriacetic acid-functionalized magnetic particles are added to a parasite-spiked sample contained within the loading chamber of the device for capture of pfHRPII. The biomarker-bound magnetic particles are then entrained by an external magnetic field and transported through three wash solutions. Processing removes sample interfering agents, and the biomarker target is concentrated in the final chamber for subsequent analysis. At parasitemias of 200 parasites/μL, purification and concentration of pfHRPII with extraction efficiencies in excess of 70% total protein target are achieved. The concentration of nonspecific protein interfering agents was reduced by more than 2 orders of magnitude in the final extracted sample without the need for hours of processing time and specialized laboratory equipment. We have demonstrated an application of this low-resource technology by coupling extraction and concentration of pfHRPII within the cassette to a commonly employed rapid diagnostic test. Sample preprocessing improved the visual limit of detection of this test by over 8-fold, suggesting that the combination of both low-resource technologies could prove to be useful in malaria eradication efforts.  相似文献   

7.
Ondansetron is a carbazol with antiemetic properties. It is used primarily to control nausea and vomiting caused by cytotoxic chemotherapy and radiotherapy, as well as for treatment of postoperative vomiting in gynecological surgery. Ondansetron has a shelf life of about 3 hr; hence, it is a matter of great interest to determine the ideal adsorption-desorption conditions for this drug on latex particles for designs of formulations (oral suspensions) containing polymers with the aim of delivering different drugs in a prolonged and controlled fashion. Time, pH, electrolytes, and concentration of the active principal at which maximal adsorption occurred were determined. Desorption of the drug from latex polymer particles was studied in different media. The results obtained suggest that this polymer is suitable as carrier of drug for obtained formulations of controlled release. The findings suggest that pH is the principal factor influencing the release of the ondansetron from Aquateric®. The greatest release of drug occurs at acid pH, approximately 70% in the first hour; for the basic medium, the release is about 6%  相似文献   

8.
We have demonstrated substantial capture and transport of fluorescently-labeled engineered cowpea mosaic virus (CPMV) using Drosophila kinesin-driven microtubules (MTs). The capture occurred through both NeutrAvidin (NA)-biotin and antibody (IgG)-antigen interactions. The MTs were derivatized with rabbit anti-chicken IgG or biotin, and the virus was conjugated with chicken IgG or NA. The CPMV conjugate was introduced into standard MT motility assays via convective flow at concentrations as high as 1.36 nM, and became bound to the MTs in densities as high as one virus per microm of MT length. When the CPMV conjugate was present at 17 pM, the average speed of the MTs bearing the NA-virus was 0.59 +/- 0.08 microm/sec, and that of those bearing IgG-virus was 0.52 +/- 0.15 microm/sec. These speeds are comparable to those of the unladen MTs (0.61 +/- 0.09 microm/sec), the presence of the virus on the MT causing only a small decrease in MT gliding speeds. The fluorescent CPMV appears to be superior to fluorescent polystyrene spheres of the same size, as both a reporter tag and a scaffold for MT-transported cargo proteins, because of its negligible non-specific adsorption and superior brightness. This work is important for the development of sensors based on nanolocomotion and biological recognition, or new strategies for the nanoassembly of biological structures.  相似文献   

9.
Ondansetron is a carbazol with antiemetic properties. It is used primarily to control nausea and vomiting caused by cytotoxic chemotherapy and radiotherapy, as well as for treatment of postoperative vomiting in gynecological surgery. Ondansetron has a shelf life of about 3 hr; hence, it is a matter of great interest to determine the ideal adsorption-desorption conditions for this drug on latex particles for designs of formulations (oral suspensions) containing polymers with the aim of delivering different drugs in a prolonged and controlled fashion. Time, pH, electrolytes, and concentration of the active principal at which maximal adsorption occurred were determined. Desorption of the drug from latex polymer particles was studied in different media. The results obtained suggest that this polymer is suitable as carrier of drug for obtained formulations of controlled release. The findings suggest that pH is the principal factor influencing the release of the ondansetron from Aquateric®. The greatest release of drug occurs at acid pH, approximately 70% in the first hour; for the basic medium, the release is about 6%  相似文献   

10.
Double-codified gold nanolabels for enhanced immunoanalysis   总被引:7,自引:0,他引:7  
A novel double-codified nanolabel (DC-AuNP) based on gold nanoparticle (AuNP) modified with anti-human IgG peroxidase (HRP)-conjugated antibody is reported. It represents a simple assay that allows enhanced spectrophotometric and electrochemical detection of antigen human IgG as a model protein. The method takes advantage of two properties of the DC-AuNP label: first, the HRP label activity toward the OPD chromogen that can be related to the analyte concentration and measured spectrophotometrically; second, the intrinsic electrochemical properties of the gold nanoparticle labels that being proportional to the protein concentration can be directly quantified by stripping voltammetry. Beside these two main direct determinations of human IgG, a secondary indirect detection was also applicable to this system, exploiting the high molar absorptivity of gold colloids, by which, the color intensity of their solution was proportional to the concentration of the antigen used in the assay. Paramagnetic beads were used as supporting material to immobilize the sandwich-type immunocomplexes resulting in incubation and washing times shorter than those typically needed in classical ELISA tests by means of a rapid magnetic separation of the unbound components. A built-in magnet graphite-epoxy-composite electrode allowed a sensibly enhanced adsorption and electrochemical quantification of the specifically captured AuNPs. The used DC-AuNP label showed an excellent specificity/selectivity, as a matter of fact using a different antigen (goat IgG) a minimal nonspecific electrochemical or spectrophotometric signal was measured. The detection limits for this novel double-codified nanoparticle-based assay were 52 and 260 pg of human IgG/mL for the spectrophotometric (HRP-based) and electrochemical (AuNP-based) detections, respectively, much lower than those typically achieved by ELISA tests. The developed label and method is versatile, offers enhanced performances, and can be easily extended to other protein detection schemes as well as in DNA analysis.  相似文献   

11.
The aim of the present work is to prepare and characterize a functionalized latex with acetal groups on the surface and to obtain the covalent coupling of an a-CRP IgG protein. The acetal latex was synthesized by means of a core-shell emulsion polymerization in a batch reactor. The core was a seed of polystyrene and the shell was obtained by terpolymerization of styrene, methacrylic acid and methacryloylacetaldehyde di(n.methyl)acetal. The latex was characterized by TEM and conductimetric and potentiometric titration, in order to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. Several latex-protein particles with the IgG physically or chemically bound to the surface were obtained by modifying the incubation conditions. In the covalent coupling experiments of the IgG, the protein physically adsorbed was removed by redispersion of the complexes in the presence of a non-ionic surfactant (Tween 20). The latex-protein complexes were characterized from the electrokinetic point of view with the aim to determine the isoelectric point of the complexes and to detect any difference in the electric state of the protein when these molecules are physically or chemically coupled to the surface. The final part of this work was to study the immunoreactivity of several latex-IgG complexes at several experimental conditions. By measuring the change in the turbidity after the addition of CRP antigen into the dispersion, it was possible to compare the immunoreactivity results when the protein is physically or chemically bound to the surface, and to study the effect of the presence of a surfactant in the reaction medium.  相似文献   

12.
We developed two kinds of highly fluorescent streptavidin-based conjugates for use as universal detection reagents in ultrasensitive immunoassays. The direct conjugate was produced by covalently linking streptavidin to poly(Glu: Lys) which was labeled heavily with Eu chelates; the indirect conjugate was made by first conjugating bovine serum albumin (BSA) to poly(Glu:Lys) labeled heavily with Eu chelates and then further linking streptavidin to the conjugate of BSA-poly(Glu:Lys)-Eu chelate. Both direct and indirect conjugates were used to construct a highly sensitive time-resolved fluorometric assay for prostate-specific antigen (PSA). Of two monoclonal antibodies used in the assay, one was coated on the well surface of the microtitration strips, and the other was biotinylated. When 10 microL of sample volume was used, we found that the assay using the indirect conjugate had a detection limit of 0.006 microg/L, which was approximately 5.6-fold more sensitive than the one using Eu chelate directly labeled detection antibody and 6.8-fold more sensitive than the one using Eu chelate-labeled streptavidin. However, the assay that used the direct conjugate was 1.5-fold more sensitive than the one that utilized the indirect conjugate. When 45 microL of sample volume was used, a detection limit of 0.001 microg/L was achieved by using the direct conjugate. This improvement in sensitivity should be equally obtainable for the analytes other than PSA. We further demonstrated that the final immunoassay performance was affected not only by the quality of the streptavidin-based conjugate used but also by the quality of the biotinylated antibody reagent. The universal detection reagents described here are believed to be particularly useful for the construction of ultrasensitive time-resolved fluorometric immunoassays and are potentially applicable in other fields such as immunohistochemistry and nucleic acid detection.  相似文献   

13.
Nan T  Wu S  Zhao H  Tan W  Li Z  Zhang Q  Wang B 《Analytical chemistry》2012,84(10):4327-4333
Ginsenoside Re (GRe) is a major active component of the Chinese medicinal herb ginseng, Panax ginseng . A sensitive and specific monoclonal antibody (mAb), designated as mAb3D6, was generated with a GRe-bovine serum albumin conjugate as an immunogen. Microcantilever immunosensors (MCS), one modified with thiolated anti-GRe antibody and one modified with thiolated goat antimouse immunoglobulin G (IgG), were developed to detect the content of ginsenoside. The MCS immobilized with thiolated goat antimouse IgG had a better sensitivity than the MCS modified with thiolated anti-GRe antibody. The advantage of a secondary antibody thio-functionalized MCS was verified with the anti-paclitaxel mAb. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was also established with mAb3D6. The concentration of analyte producing 50% inhibition and the working range of icELISA were 1.20 and 0.15-16.1 ng/mL, respectively. The icELISA had a cross-reactivity of 89% with ginsenoside Rg1 and less than 3% with other ginsenosides. The icELISA and MCS with thiolated secondary antibody were applied for the determination of GRe in ginseng samples, and the results agreed well with those determined by high-performance liquid chromatography.  相似文献   

14.
The general approach for site-oriented immobilization of antibodies onto gold supports is reported. The immobilization is carried out using the native sulfide groups of immunoglobulin (IgG). To liberate the thiol groups, the intact IgG was split into two half-IgG fragments without destruction of the binding site of the antibody. The immobilization of half-IgG fragments on the gold surface was carried out by simple adsorption. The antigen binding capacity of the half-IgG modified gold supports is similar to that of the gold surfaces with the traditionally linked antibodies and is much higher than for nonspecifically adsorbed intact IgGs. The immobilized antibodies, according to the proposed approach, maintain high antigen binding constants. The immobilization procedure provides orientation of IgG fragments in terms of the similar distance between the binding site of the antibody and the surface of the gold support, which does not cause the distribution of the apparent affinity constants. The high operational stability of half-IgG modified gold electrodes makes them applicable for analytical applications.  相似文献   

15.
Jung Y  Lee JM  Jung H  Chung BH 《Analytical chemistry》2007,79(17):6534-6541
A versatile biolinker for efficient antibody immobilization was prepared by site-specific coupling of protein G to DNA oligonucleotide. This protein G-DNA conjugate ensures the controlled immobilization of an antibody to the intended area on the surface of bioassay chips or particles, while maintaining the activity and orientation of the bound antibody. Streptococcus protein G tagged with a cysteine residue at the N-terminus was chemically linked to amine-modified, single-stranded DNA. SPR analysis indicated that the protein G-DNA conjugates sequence-specifically bind to complementary surface-bound DNA probes. More importantly, the resulting protein G, which is hybridized onto the DNA surface, possesses a greater antibody/antigen binding ability than even properly oriented protein G linked on the chip surface by chemical bonding. Antibody targeting on glass slides could also be achieved by using this linker system without modifying or spotting antibodies. Moreover, the protein G-DNA conjugate provided a simple but effective method to label DNA-functionalized gold nanoparticles with target antibodies. The DNA-linked protein G construct introduced in this study offers a useful strategy to manage antibody immobilization in many immunoassay systems.  相似文献   

16.
P190是恶性疟原虫裂殖子表面抗原,是很有希望的疟疾疫苗候选抗原。采用PCR方法克隆了我国海南省FCC1/HN株P190抗原基因的3个保守区片段,连接到pUC18载体上进行DNA序列测定,然后分别与表达载体pGEX-2T连接,经双酶切鉴定后转化感受态JM109大肠杆菌进行高效融合表达。  相似文献   

17.
The main objective of the present paper was to test the recently developed new type of 3-D protein microarray system based on glycidyl methacrylate-co-ethylene glycol dimethacrylate (GMA-EDMA) monolithic material for efficient and fast virus detection. The large-size synthetic particles bearing adsorption-responsible biomolecules on their surface were used as a virus model. Two affinity pairs were chosen for present study. Model virus-like particles, close to the dimensions of human viruses, were developed by means of protein (one of affinity partners) covalent binding to the outer carboxylated surface of polymer latexes (polystyrene based, 80-nm diameter). Recently, it was shown that the adsorption of similar synthetic particles was defined by a protein covering the particle surface. The corresponding complement was immobilized on the surface of prepared by photoinitiated polymerization GMA-EDMA macroporous layers. The detection of a formed biocomplementary complex between protein-bearing latex particle and immobilized affinity partner was carried out by two different methods: (1) similar to an ELISA approach using horse radish peroxidase conjugated with monoclonal antibodies and (2) direct method using two markers. In parallel, the pairing of native proteins was also evaluated. The adsorption behavior of studied particles has been additionally investigated by affinity adsorption at static and dynamic (frontal elution) conditions using the same GMA-EDMA material shaped as a short monolithic column (CIM Disk, BIA Separations, Ljubljana, Slovenia). The results obtained for these virus-mimicking supramolecular structures can be further used for the construction of a rapid, highly sensitive, and highly specific test intended for precise diagnostics of some respiratory tract infection viruses.  相似文献   

18.
A bioluminescence DNA hybridization assay for the detection of Plasmodium falciparum, the most deadly species of malaria, using the photoprotein aequorin as a bioluminescent label has been developed. The current gold standard for the detection of malaria is light microscopy, which can detect down to approximately 50 parasites/microL of blood, but has low-throughput, high costs, and requires high skill, which limit the applicability of the method, especially in the developing regions where malaria detection is mostly needed. The utilization of aequorin as a bioluminescence label offers the advantages of high signal-to-noise ratio and reliable detection down to attomole levels, allowing for the development of highly sensitive and miniaturized high-throughput bioluminescence assays. Herein, we developed a DNA hybridization assay for the detection of P. falciparum based on the competition between the target DNA and the signal generating DNA streptavidin-aequorin for hybridization with the probe DNA. This bioluminescence hybridization assay demonstrated a detection limit of 3 pg/microL and was employed for the detection of target DNA in standard and spiked human serum samples. The DNA hybridization assay was developed in a microplate format without the need for sample PCR amplification, showing the potential suitability of this method in the parallel analysis of samples by low-trained personnel, such as that typically encountered in developing regions.  相似文献   

19.
A self-contained, microelectrochemical immunoassay on the smallest volumes reported to date (1 microL for the antigen, 1 microL for the secondary antibody-enzyme conjugate, and 200 nL for the electrochemically detected species) has been developed using mouse IgG as a model system in a sandwich-type enzyme-linked immunosorbant assay, which takes less than 30 min to both complete the assembly of immunoassay components onto the antibody-modified surface and detect enzymatically generated species (excluding time for electrochemical cleaning of electrodes). These studies demonstrate the advantage of the close proximity of electrodes to modified surfaces and their application in the analysis of small volumes. Using a 50 microm diameter x 8 microm deep cavity with individually addressable electrodes on a microfabricated chip, the primary antibody was selectively and covalently attached at a gold, recessed microdisk (RMD) at the bottom of the microcavity to the free end of SAMs of either 11-mercaptoundecanoic acid or 11-mercapto-1-undecanol using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. Nonspecific adsorption to the surrounding material, polyimide, of the microcavity device was eliminated. Electrochemical desorption was used to confine the immunoassay activity at the RMD. Enzymatic conversion of the substrate p-aminophenyl phosphate top-aminophenol is detectable in less than 30 s using cyclic voltammetry at a gold, tubular nanoband electrode, which is on the wall of the microcavity and immediately adjacent to the modified RMD. A third electrode, also within the region of the microcavity, served as the pseudoreference/auxiliary electrode. Calibration curves obtained for 1-microL solutions of 5-100 ng/mL of IgG and for 200 nL-solutions of 5 microM to 4 mM of PAPR gave detection limits of 4.4 nM (6.4 ng/mL) or 880 fmol (129 pg) for PAPR and 56 fM (9 pg/mL) or 56 zmol (9 fg) for IgG. It is expected that the device may be suitable for analysis with volumes down to tens of picoliters.  相似文献   

20.
A rapid, sensitive format for immunosorbent assays has been developed to meet the increasing levels of performance (i.e., reduction of incubation times and detection limits) demanded in the medical, veterinary, and bioterrorism prevention arenas. This paper introduces the concept of a rotating capture substrate as a facile means to increase the flux of antigen and label to the solid-phase surface and thereby reduce assay time. To this end, a sandwich-type assay is carried out that couples the specificity of antibody-antigen interactions with the high sensitivity of surface-enhanced Raman scattering detection. To investigate this strategy, polyclonal anti-rabbit IgG was immobilized on a gold capture substrate via a thiolate coupling agent. The capture substrate, capable of controlled rotation, was then immersed in a sample solution containing rabbit IgG, which served as a model analyte. After binding the target IgG, the substrates were immersed and rotated in an extrinsic Raman label (ERL) labeling solution, which is composed of gold nanoparticles (60 nm) coated with an aromatic moiety as the Raman scatterer and an antibody as the biospecific recognition element. The effect of substrate rotation on both the antigen binding and ERL labeling steps was investigated. Implementation of optimized rotation conditions resulted in the reduction of assay times from 24 h to 25 min and a 10-fold improvement in the limit of detection. Finally, the developed protocol was applied to the detection of rabbit IgG suspended in goat serum, which served to assess performance in a biological matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号