共查询到20条相似文献,搜索用时 4 毫秒
1.
通过共沉淀法合成了掺杂Fe元素的锂离子电池正极材料Li[Ni_(1/3)Co_((1-x)/3)Mn_(1/3)Fe_(x/3)]O_2(x=0、0.1、0.3、0.5、0.7和0.9)。用循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,研究铁、钴元素含量对材料电化学性能的影响。与三元材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2相比,少量Fe掺杂(x=0.1)的Li[Ni_(1/3)Co_(0.9/3)Mn_(1/3)Fe_(0.1/3)]O_2比容量更高,循环性能更好。以0.1 C在2.4~4.5 V恒流充放电,首次、第30次循环的放电比容量分别为168.2 mAh/g、139.1 mAh/g,容量保持率为86.02%。 相似文献
2.
以过渡金属硫酸盐和氢氧化锂为原料,采用共沉淀法合成锂离子电池富锂正极材料0.5Li_2MnO_3·0.5LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明:900℃煅烧10 h合成的样品具有较好的层状结构和优异的电化学性能;在30℃以0.1 C的电流密度充放电,2.0~4.8 V电位范围内首次放电比容量高达270.1 m Ah/g,循环100次后放电比容量为212.6 m Ah/g;该材料还表现出较好的倍率性能,以5 C充放电时还有120 m Ah/g的放电比容量。 相似文献
3.
以溶胶-凝胶法制备氯阴离子掺杂型正极材料LiNi1/3 Co1/3Mn1/3 O2-xClx(x=0、0.05、0.10和0.15).用TG/DTG测试分析了材料的相形成过程.XRD分析结果表明:在空气气氛中以850℃煅烧20 h制备的材料,具有良好的六方单相层状结构.电化学性能测试结果表明:掺杂抑制了高电压区域的相变过程,提高了材料的可逆性;x=0.10的样品具有良好的循环性能和倍率性能,在2.0~4.6V循环,0.15 C、1.00 C首次放电比容量分别为198.7 mAh/g、166.4 mAh/g,第25次0.15 C循环的放电比容量为197.9 mAh/g. 相似文献
4.
层状结构的LiNi1/3Co1/3Mn1/3O2材料具有性能优异,环境污染小,毒性低以及高温稳定性好等优点,但其结构中阳离子混排现象以及结构的稳定性严重制约了其循环性能,其中一种很有效的方法就是在LiNi1/3Co1/3Mn1/3O2的晶格中掺杂各种离子,促进Li+扩散以及提高该材料的循环性能。综述了Mg、Al、Cr、F等阴阳离子掺杂以及阴阳离子复合掺杂对于LiNi1/3Co1/3Mn1/3O2材料在结构、形貌、放电性能等方面的影响,重点突出了元素掺杂手段对LiNi1/3Co1/3Mn1/3O2结构中Ni2+/Li+阳离子混排、结构稳定性、充放电效率以及循环性能方面的改善,并对此类掺杂改性手段进行总结及展望。 相似文献
5.
二元掺杂LiMn2O4正极材料的研究 总被引:2,自引:0,他引:2
采用高温固相法合成了二元掺杂的锂离子电池正极材料LiMxM'yMn2-x-yO4(M=Al,Ni,Co;M'=La,Sm;x=0.01,0.02,0.08;y=0.01,0.02).使用XRD和SEM分析了正极材料的结构和形貌,结果表明:材料具有良好的尖晶石型结构,颗粒分布均匀;充放电测试表明:掺杂不同元素对LiMn2O4电化学性能影响很大;相对其他正极材料,LiCo0.08La0.02Mn1.90O4在3.0~4.3 V电压区间内具有最好的电化学性能,首次放电比容量达120 mAh/g,50次循环后的放电比容量为109 mAh/g,容量衰减率为7%. 相似文献
6.
用氢氧化物共沉淀法结合固相反应合成锂离子电池正极材料Li_(1.167)Ni_(0.4-x)Mn_(0.383)Co_(0.05)Ti_xO_2(x=0、0.02、0.04、0.06和0.08)。通过XRD、SEM、电感耦合等离子体原子发射光谱(ICP-AES)和电化学性能测试,考察Ti掺杂量x对产物晶体结构和电化学性能的影响。Ti掺杂可提高材料的循环性能,Li_(1.167)Ni_(0.36)Mn_(0.383)Co_(0.05)Ti_(0.04)O_2材料具有最优的电化学性能,以0.1 C在2.0~4.8 V循环,首次放电比容量为186.6 m Ah/g,循环10次的容量保持率为99.4%。 相似文献
7.
以氨水和NaO H为络合剂和沉淀剂,采用氢氧化物共沉淀法合成了锂离子电池正极材料Li1.17Mn0.48Ni0.23Co0.12-MgxO2(x=0,0.01,0.02,0.03,0.05)。并利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对其晶体结构、形貌和电化学性能进行了表征。研究表明:掺杂适量的Mg能够降低材料的阳离子混排度,改善材料的循环性能。Li1.17Mn0.48Ni0.23Co0.12Mg0.03O2具有最优的电化学性能,在0.1 C(1 C=358 mA h/g)下首次放电比容量为234.7 mA h/g,在0.1 C下循环10次后容量保持率为99.3%。 相似文献
8.
草酸盐共沉淀法制备层状LiNi1/3Co1/3-xLaxMn1/3O2正极材料 总被引:1,自引:0,他引:1
采用草酸盐共沉淀法制备了锂离子电池用稀土元素镧掺杂层状正极材料LiNi1/3Co1/3-xLaxMn1/3O2(0x1),考察了镧掺杂对其结构与电化学性能的影响。XRD与电化学性能测试结果表明,层状正极材料LiNi1/3Co1/3-0.04La0.04Mn1/3O2具有较好的层状结构和综合电化学性能。表征阳离子的混排程度的峰强比I(003)/I(104)=1.2491.2,表示六角晶格的有序性的R因子R=0.5。在2.8~4.2 V(vs.Li/Li+)电压范围,0.1 C倍率的首次放电比容量为147.56 mAh/g,首次充放电效率为94%,0.2 C倍率循环20次后继续以0.5 C倍率循环20次的可逆比容量为141.7 mAh/g,为首次放电比容量的96.0%。SEM结果表明,颗粒平均粒径约1.2 mm,形状近似于球形。 相似文献
9.
微波烧结工艺制备LiNi_(0.5)Mn_(0.5)O_2正极材料 总被引:2,自引:0,他引:2
以乙酸镍、乙酸锰、乙酸锂和柠檬酸为原料,用溶胶.凝胶法制得前驱体,再用微波烧结工艺制备Li Ni0.5 Mn0.5O2正极材料.用ICP-AES、IR和TG-DSC等方法测试前驱体,用XRD、SEM、TEM和SAED等方法分析样品.溶液DH=8、总金属离子浓度为1.333 mol/L时得到的前驱体,在400 ℃下预烧4 h,再以3 kW加热10 min、800 W保持10 min,可制备出高结晶度的层状Li Ni0.5 Mn0.5O2,0.1 C首次充放电效率为96.3%. 相似文献
10.
11.
在氢氧化物共沉淀法制备前驱体的过程中添加纳米Al2O3,进行Al掺杂,考察掺杂量x对Li(Ni1/3Co1/3Mn1/3)1-x AlxO2形貌和电化学性能的影响。x=0.02的产物以0.2 C在2.7~4.2 V充放电,第50次循环的容量保持率为95.7%,高于未掺杂样品的81.5%,循环性能随着放电倍率的增大而提高。 相似文献
12.
13.
用Li2MnO3和还原氧化石墨烯(rGO)对Li Mn1/3Ni1/3Co1/3O2进行表面修饰。Li2MnO3和rGO修饰可改善样品的电化学性能,其中3%Li2MnO3+3%rGO混合修饰样品以1.0 C在2.5~4.4 V充放电,首次放电比容量为159.2 m Ah/g,循环40次的容量保持率为95.0%。 相似文献
14.
以六水合硝酸镍、硝酸钴和二氧化锰为原料,以柠檬酸为分散剂和燃料,采用球磨工艺对原料进行混合,在950℃于空气气氛中保温10 h制备了层状结构的LiCo_(1/3)Mn_(1/3)Ni_(1/3)O_2正极材料.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学性能测试手段对所制备材料的结构、形貌及电化学性能进行表征.结果表明:所合成的材料为单相的六方层状结构,颗粒大小均匀.在2.75~4.3 V电压区间,以0.1 C恒电流充放电,首次充/放电比容量为184.3/156.7mAh/g,充/放电效率为85%.0.5 C倍率下充放电,材料首次放电比容量为151.3 mAh/g,经过30次循环后比容量保持在1 50.8 mAh/g左右,循环性能优异. 相似文献
15.
以金属硫酸盐为原料、Na_2CO_3为沉淀剂、NH_3·H_2O为络合剂,采用共沉淀结合高温烧结法合成锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2。XRD、SEM和电化学性能测试结果表明:在800℃下烧结10 h可获得颗粒分布均匀、层状结构明显且电化学性能良好的产物。在2.0~4.8 V充放电,电流为30 mA/g时的最高放电比容量为247.4 mAh/g;电流为300 mA/g时,首次和第50次循环的放电比容量分别为199.3 mAh/g、190.4 mAh/g。 相似文献
16.
17.
采用聚合物热解的方法合成了富锂正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2(RLMO),并对其进行硼磷玻璃(BPG)表面包覆。经过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)实验表明,材料颗粒尺寸在100~200 nm范围,其表面明显具有非晶包覆层,且表面包覆不会改变材料的主体结构。在2.0~4.8 V范围内进行恒流充放电测试表明,非晶硼磷玻璃包覆材料(BPG-RLMO)具有更高的首次放电比容量(279.5 m Ah/g,30 m A/g)、高的首次库仑效率(91.3%)和优异的循环稳定性(100次循环后容量保持率为86.4%,30 m A/g)。这些结果表明非晶硼磷玻璃包覆可有效抑制电解液的表面分解和所引起的表面结构破坏,提高了材料的首次库仑效率和循环稳定性,为高性能富锂正极材料的发展提供一种可借鉴途径。 相似文献
18.
首次采用一种固相自引发基团置换反应法制备了蔗糖改性的LiNi1/3Co1/3Mn1/3O2材料.采用X射线衍射(XRD)、场发射扫描电镜(SEM)技术对产物的结构和形貌进行了表征,同时对其电化学性能进行了检测.结果表明,在前驱体中加入少量的蔗糖可以有效改善LiNi1/3Co1/3Mn1/3O2材料的微观结构和电化学性能.在3~4.3 V的充放电电压区间内.添加质量分数3%蔗糖所制备的LiNi1/3Co1/3Mn1/3O2材料显示出最高的初始放电比容量0.1 C达到183 mAh/g. 相似文献
19.
以NiSO4·6H2O、CoSO4·7H2O、MnSO4·H2O、NH3·H2O及NaOH为原料,采用共沉淀方法在LiNi0.8 C00.15 Al0.05 (OH)2球形粒子表面包覆一层Ni1/3 Co1/3Mn1/3(OH)2三元材料前驱体,配锂后在750℃下、氧气气氛中焙烧12 h,合成复合层状材料Li[(Ni0.8 Co0.15Al0.05)0.97(Ni1/3Co1/3Mn1/3)0.03]O2.复合层状材料具有核壳结构,包覆壳层的厚度约为1μm.复合层状材料在2.8~4.3 V充放电,0.1C首次放电比容量为188.2 mAh/g;0.2 C循环100次的容量保持率为96.2%;在55℃下以0.2C循环100次,放电比容量保持在163.2 mAh/g. 相似文献
20.
以氢氧化钠为沉淀剂,氨水为络合剂,通过氢氧化物共沉淀法制得前驱体,然后高温煅烧,合成锂离子电池正极材料Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(1-x)Mg_xO_2(x=0、0.01、0.02、0.03和0.04)。通过XRD、循环伏安、电化学阻抗谱(EIS)和恒流充放电等测试,研究Mg掺杂对材料性能的影响。适量的Mg掺杂可降低材料阳离子混排度,提高材料的循环性能及倍率性能。Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(0.98)Mg_(0.02)O_2的电化学性能较好,以0.1 C在2.7~4.3 V循环,首次放电比容量高达190.9 mAh/g;1.0 C循环30次的容量保持率为90.07%。 相似文献