首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to explore the power-law relationship between citation-based performance (CBP) and co-authorship patterns for papers in management journals by analyzing its behavior according to the type of documents (articles and reviews) and the number of pages of documents. We analyzed 36,241 papers that received 239,172 citations. The scaling exponent of CBP for article papers was larger than for reviews. Citations to articles increased 21.67 or 3.18 times each time the number of article papers published in a year in management journals doubled. The citations to reviews increased 21.29 or 2.45 times each time the number of reviews published in a year in management journals doubled. The scaling exponent for the power-law relationship of citation-based performance according to number of pages of papers was 1.44 ± 0.05 for articles and 1.25 ± 0.05 for reviews. The citations to articles increased faster than citation to reviews. The scaling exponent for the power-law of citation-based performance to co-authored articles was higher than single-authored articles. For reviews the scaling exponent was the same for the relationship between citation based performance and the number of reviews. Citations increased faster in single authored reviews than co-authored reviews.  相似文献   

2.
Nowadays identifying the personal representative works is becoming increasingly important and necessary for scientists in many cases, such as faculty hiring and promotion applications. There are already a few methods based on different criteria for selecting the representative works of a scientist, like citation count. In addition, we can observe that some researchers always produce many similar quality scientific papers and some researchers have several highly cited papers compared with his or her other papers. In this context, we propose to use the maximum gap in a histogram of a scientist’s sorted papers’ citation counts to classify his or her papers into two groups, i.e. representative papers and regular papers. Based on the maximum gap, we then design an indicator \(D_{r}\) to quantify the impact difference between scientist’s representative works and regular works. We apply this selection method and \(D_{r}\) index into the data of American Physical Society (APS) journals. The results indicate that the selection method can better identify the representative works of Nobel laureates in Physics compared with using the most cited paper. We also find that the number of representative works selected by our method is related to \(D_{r}\). A larger number of selected papers would appear when the value of \(D_{r}\) index is relatively smaller. Meanwhile, we also observe that \(D_{r}\) is weakly correlated with the h index and total citation.  相似文献   

3.
DyNi\(_{2}\)B\(_{2}\)C superconducts at \(T_{c} \approx 6\,{\text{K}}\) and orders antiferromagnetically at \(T_{N}\approx 10\,{\text{K}}.\) Its non-superconducting isomorph DyCo\(_{2}\)B\(_{2}\)C is a ferromagnet with \(T_{C}\approx 6\,{\text{K}}.\) With the aim of mapping out the magnetic properties, in particular magnetic structures, of their solid solutions, we synthesized \(^{11}\)B-enriched Dy(Co\(_{x}\)Ni\(_{1-x}\))\(_{2}\)B\(_{2}\)C (\(x=0.2,0.4,0.6,0.8\)). We investigated the evolution of their magnetic, thermal and transport properties by means of the magnetization, resistivity, specific heat and neutron diffraction techniques. Their crystal structures were confirmed to be ThCr\(_{2}\)-Si\(_{2}\)-type tetragonal (I4/mmm) phase. The magnetic structure was found to be antiferromagnetic with k0.2 = (0, 0, 1) for x = 0.2; helicoidal with k\(_{0.4}\) = (0, 0, 0.49) and k\(_{0.6}\) = (0, 0, 0.46) for, respectively, x = 0.4 and 0.6 and ferromagnetic with k\(_{0.8}\) = (0, 0, 0) for x = 0.8. We discuss the evolution of such magnetic modes assuming a scenario of an idealized one-dimensional chain of transverse magnetic moments.  相似文献   

4.
The new kröhnkite compound called potassium calcium-bis-hydrogen arsenate dihydrate K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O was obtained by hydrothermal method and characterized by X-ray diffraction, infrared spectroscopy, Raman scattering, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis and optical (photoluminescence and absorption) properties. It crystallizes in the triclinic space group P\(\bar{1}\) and unit cell parameters \(a = 5.971(3)\) Å, \(b =6.634(3)\) Å, \(c = 7.856(4)\) Å, \(\alpha =104.532(9)\) \(^{\circ }\), \(\beta = 105.464(9)\) \(^{\circ }\) and \(\gamma = 109.698(9)\) \(^{\circ }\). The structure of K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O built up from this infinite, (Ca(HAsO\(_{4})_{2}\)(H\(_{2}\)O)\(_{2})^{2+}\), was oriented along an axis resulting from the association of CaO\(_{6}\) octahedra alternating with each two HAsO\(_{4}\) tetrahedra by sharing corners. Each potassium atom links two adjacent chains by three oxygen atoms of HAsO\(_{4}\) tetrahedra. TGA and DSC have shown the absence of phase transition. The existence of vibrational modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges of 400–4000 and 20–4000 cm\(^{-1}\), respectively. The photoluminescence measurement show one peak at 507 nm, which is attributed to band–band (free electron–hole transitions) and (bound electron–hole transitions) emissions within the AsO\(_{4}\) inorganic part.  相似文献   

5.
The feasibility of residual stress assessment in precipitation hardened IN718 nickel-base superalloy based on Hall coefficient measurement is investigated through studying the influence of thermal hardening, cold work, and applied stress. Measurements in IN718 specimens of various hardness levels show that the Hall coefficient increases from 8 ± 0.1\(\,\times \,\)10\(^{-11}\) m\(^{3}\)/C in the fully annealed state of 14 HRC to 9.4 ± 0.1\(\,\times \,\)10\(^{-11}\) m\(^{3}\)/C in the fully hardened state of 45 HRC. Measurements in IN718 specimens of various cold work levels show that plastic deformation exerts negligible effect on the Hall coefficient of fully annealed IN718, while in fully hardened IN718 the Hall coefficient decreases more or less linearly with cold work from its peak value of 9.4 ± 0.1\(\,\times \,\)10\(^{-11}\) m\(^{3}\)/C in its intact state to 8.9 ± 0.1\(\,\times \,\)10\(^{-11}\) m\(^{3}\)/C in its most deformed state of 22% plastic strain. Measurements taken under applied stress show that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain is called the galvanomagnetic gauge factor and defined as the ratio of the relative change of the Hall coefficient divided by the axial strain under applied uniaxial stress. The gauge factor of IN718 is in the range of 2.6–2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements does not happen in this case. In addition, the influence of thermal exposure up to 700 \({{}^{\circ }}\)C and the reversible temperature dependence of the Hall coefficient at room temperature are studied in IN718 at different hardness levels.  相似文献   

6.
A new sub-millikelvin calibration facility for the range 0 \(^{\circ }\)C to 30 \(^{\circ }\)C is described, that allows calibration of customer thermometers, other than standard platinum resistance thermometers, with an uncertainty lower than 1 millikelvin. The improvements with respect to the traditional calibration facility are reported with particular emphasis on the temperature control (better than 0.2 mK), resistance measurement and calibration procedure. The new facility was validated by using 6 standard platinum resistance thermometers and the calibration uncertainty in the range from 0 \(^{\circ }\)C to 30 \(^{\circ }\)C amounted to 0.31 mK–0.35 mK. To demonstrate the potentiality of this facility, two oceanographic thermometers, Sea-Bird Electronics SBE 3 and SBE 35, were calibrated with an expanded uncertainty of 0.8 mK (\(k=2\)).  相似文献   

7.
8.
Heat-flux sensors are widely used in industry to test building products and designs for resistance to bushfire, to test the flammability of textiles and in numerous applications such as concentrated solar collectors. In Australia, such detectors are currently calibrated by the National Measurement Institute Australia (NMIA) at low flux levels of 20 W \(\cdot \) m\(^{-2}\). Estimates of the uncertainty arising from nonlinearity at industrial levels (e.g. 50 kW \(\cdot \) m\(^{-2}\) for bushfire testing) rely on literature information. NMIA has developed a facility to characterize the linearity response of these heat-flux sensors up to 110 kW \(\cdot \) m\(^{-2}\) using a low-power \(\hbox {CO}_2\) laser and a chopped quartz tungsten–halogen lamp. The facility was validated by comparison with the conventional flux-addition method, and used to characterize several Schmidt–Boelter-type sensors. A significant nonlinear response was found, ranging from (\(3.2 \pm 0.9\))% at 40 kW \(\cdot \) m\(^{-2}\) to more than 8 % at 100 kW \(\cdot \) m\(^{-2}\). Additional measurements confirm that this is not attributable to convection effects, but due to the temperature dependence of the sensor’s responsivity.  相似文献   

9.
The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil (Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about \(2.14\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\). A transient thermal probe method was applied to measure the thermal conductivity (\(\lambda \)) over a full range of the degree of saturation \((S_{\mathrm{r}})\), at two porosities (n) of 0.44 and 0.50, and at room temperature of about \(25\,^{\circ }\hbox {C}\). The \(\lambda \) data obtained were consistent between tests and showed an increasing trend with increasing \(S_{\mathrm{r}}\) and decreasing n. At full saturation (\(S_{\mathrm{r}}=1\)), a nearly quintuple \(\lambda \) increase was observed with respect to full dryness (\(S_{\mathrm{r}}=0\)). In general, the measured data closely followed the natural trend of \(\lambda \) versus \(S_{\mathrm{r}}\) exhibited by published data at room temperature for other unsaturated soils and sands. The measured \(\lambda \) data had an average root-mean-squared error (RMSE) of \(0.007\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) and \(0.008\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level \((\hbox {RSDM}_{0.95})\) of 2.21 % and 2.72  % for n of 0.50 and 0.44, respectively.  相似文献   

10.
Co\(^+\) ions with multiple energies from 50 to 380 keV were implanted into ZnO single crystals up to a total dose of \(1.25\times 10^{17}\,\hbox {cm}^2\). The implanted samples were annealed in open air for 30 min between 200 and 1100 \(^{\circ }\)C. All the samples before and after implantation and annealing were characterized by X-ray diffraction (XRD), Raman scattering and positron annihilation measurements. XRD and Raman scattering measurements indicate that Co implantation induces severe lattice damage, and after annealing the damage recovers gradually. No Co clusters or Co-related second phase was observed in the implanted samples. Doppler broadening of positron annihilation radiation measurements using a slow positron beam reveals a large number of vacancy clusters introduced by Co implantation. After annealing up to 1000 \(^{\circ }\)C, almost all the defects induced by implantation are removed. The implanted samples show clear ferromagnetism measured at 5 K. It shows very slight decrease after annealing at 700 \(^{\circ }\)C and becomes much weaker after annealing at 1000 \(^{\circ }\)C. The origin of ferromagnetism is most probably due to substitution of Co\(^+\) ions at Zn lattice sites. However, it is apparent that the decrease in magnetization after annealing is consistent with the vacancy recovery process, indicating that the ferromagnetism in Co-implanted ZnO is mediated by defects such as Zn vacancy (V\(_{Zn}\)) or vacancy clusters. First principles calculations also support that Zn-related monovacancies and vacancy clusters can enhance the ferromagnetism in Co-doped ZnO.  相似文献   

11.
Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 \(^{\circ }\hbox {C}\), where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 \(^{\circ }\hbox {C}\), the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land–Jewell thermocouples exposed to either short-term calibration up to 1600 \(^{\circ }\hbox {C}\) or long-term in situ measurements for a period of approximately 3000 h at 1600 \(^{\circ }\hbox {C}\). The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 \(^{\circ }\hbox {C}\) to 900 \(^{\circ }\hbox {C}\). The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 \(^{\circ }\hbox {C}\) should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.  相似文献   

12.
Polymer-derived pyrolytic carbons (PyCs) are highly desirable building blocks for high-strength low-density ceramic meta-materials, and reinforcement with nanofibers is of interest to address brittleness and tailor multi-functional properties. The properties of carbon nanotubes (CNTs) make them leading candidates for nanocomposite reinforcement, but how CNT confinement influences the structural evolution of the PyC matrix is unknown. Here, the influence of aligned CNT proximity interactions on nano- and mesoscale structural evolution of phenol-formaldehyde-derived PyCs is established as a function of pyrolysis temperature (\(T_{\mathrm {p}}\)) using X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. Aligned CNT PyC matrix nanocomposites are found to evolve faster at the mesoscale by plateauing in crystallite size at \(T_{\mathrm {p}}\) \(\sim\)800 \(^{\circ }\hbox {C}\), which is more than \(200\,\,^{\circ }\hbox {C}\) below that of unconfined PyCs. Since the aligned CNTs used here exhibit \(\sim\)80 nm average separations and \(\sim\)8 nm diameters, confinement effects are surprisingly not found to influence PyC structure on the atomic-scale at \(T_{\mathrm {p}}\) \(\le \)1400 \(^{\circ }\hbox {C}\). Since CNT confinement could lead to anisotropic crystallite growth in PyCs synthesized below \(\sim\)1000 \(^{\circ }\hbox {C}\), and recent modeling indicates that more slender crystallites increase PyC hardness, these results inform fabrication of PyC-based meta-materials with unrivaled specific mechanical properties.  相似文献   

13.
Recent advances in primary acoustic gas thermometry (AGT) have revealed significant differences between temperature measurements using the International Temperature Scale of 1990, \(T_{90}\), and thermodynamic temperature, T. In 2015, we published estimates of the differences \((T-T_{90})\) from 118 K to 303 K, which showed interesting behavior in the region around the triple point of water, \(T_\mathrm{TPW}=273.16\) K. In that work, the \(T_{90}\) measurements below \(T_\mathrm{TPW}\) used a different ensemble of capsule standard platinum resistance thermometers (SPRTs) than the \(T_{90}\) measurements above \(T_\mathrm{TPW}\). In this work, we extend our earlier measurements using the same ensemble of SPRTs above and below \(T_\mathrm{TPW}\), enabling a deeper analysis of the slope \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) around \(T_\mathrm{TPW}\). In this article, we present the results of seven AGT isotherms in the temperature range 258 K to 323 K. The derived values of \((T-T_{90})\) have exceptionally low uncertainties and are in good agreement with our previous data and other AGT results. We present the values \((T-T_{90})\) alongside our previous estimates, with the resistance ratios W(T) from two SPRTs which have been used across the full range 118 K to 323 K. Additionally, our measurements show discontinuities in \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) at \(T_\mathrm{TPW}\) which are consistent with the slope discontinuity in the SPRT deviation functions. Since this discontinuity is by definition non-unique, and can take a range of values including zero, we suggest that mathematical representations of \((T-T_{90})\), such as those in the mise en pratique for the kelvin (Fellmuth et al. in Philos Trans R Soc A 374:20150037, 2016. doi: 10.1098/rsta.2015.0037), should have continuity of \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) at \(T_\mathrm{TPW}\).  相似文献   

14.
Impurities are considered to be the most significant source of uncertainty for the realization of the International Temperature Scale of 1990 by means of metal fixed points. The determination and further reduction in this uncertainty require a traceable chemical analysis of dissolved impurities in the fixed-point metal and accurate knowledge of the specific temperature change caused by impurities (slope of the liquidus line). We determined the slope of the liquidus line for three binary systems and present results and conclusions from the chemical analysis of zinc with a nominal purity of 7N. For the Fe–Zn system, we determined a liquidus slope of (\(-0.91\pm 0.14\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of freezing plateaus and (\(-0.76~\pm 0.20\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of melting plateaus; for the Pb–Zn system, the corresponding results are (\(-0.27~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) and (\(-0.26~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)). Although for the Sb–Zn system, we determined a liquidus slope of about \(-0.8\) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)), our investigations showed that a correction of the influence of antimony is highly questionable because antimony can be found in zinc in a fully dissolved state or precipitated as an insoluble compound. Iron is the only impurity where a correction of the fixed-point temperature was possible. For the realization of the zinc fixed point at PTB, this correction is between 2 \(\upmu \)K and 16 \(\upmu \)K depending on the batch of zinc used. The influence of the sum of all impurities was estimated by means of the OME method. The resulting uncertainty contribution is between 12 \({\upmu }\hbox {K}\) and 48 \({\upmu }\hbox {K}\).  相似文献   

15.
Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) (100 and \(210^{\circ }\hbox {F})\) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78\(\,^{\circ }\hbox {C}\) and \(98.89\,^{\circ }\hbox {C}\) with average absolute deviations of 0.39 and \(0.72\hbox { mm}^{2}/\hbox {s}\), respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20 \(^{\circ }\hbox {C}\) to 150 \(^{\circ }\hbox {C}\) and viscosities from 0.14\(\hbox { mm}^{2}/\hbox {s}\) to 343.64\(\hbox { mm}^{2}/\hbox {s}\). The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of \(0.248\hbox { mm}^{2}/\hbox {s}\) and \(\hbox {R}^{2}\) of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with \(R^{2}\) as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.  相似文献   

16.
This study confirms reproducibility of the International Temperature Scale of 1990 (ITS-90) realized by interpolation using the constant-volume gas thermometer (CVGT) of National Metrology Institute of Japan (NMIJ)/AIST with \(^{3}\)He as the working gas from 3 K to 24.5561 K by comparing the newly obtained results and those of earlier reports, indicating that the CVGT has retained its capability after renovation undertaken since strong earthquakes struck Japan. The thermodynamic temperature T is also obtained using the single-isotherm fit to four working gas densities (\(127\,\hbox {mol}\cdot \hbox {m}^{-3}\), \(145\,\hbox {mol}\cdot \hbox {m}^{-3}\), \(171\,\hbox {mol}\cdot \hbox {m}^{-3}\) and \(278\,\hbox {mol}\cdot \hbox {m}^{-3})\) down to 1.9 K, using the triple point temperature of Ne as a reference temperature. In this study, only the second virial coefficient is taken into account for the single-isotherm fit. Differences between T and the ITS-90 temperature, \(T-T_{90}\), reported in earlier works down to 3 K were confirmed in this study. At the temperatures below 3 K down to 2.5 K, \(T-T_{90}\) is much smaller than the standard combined uncertainty of thermodynamic temperature measurement. However, \(T- T_{90}\) seems to increase with decreasing temperature below 2.5 K down to 1.9 K, although still within the standard combined uncertainty of thermodynamic temperature measurement. In this study, T is obtained also from the CVGT with a single gas density of \(278\,\hbox {mol}\cdot \hbox {m}^{-3}\) using the triple-point temperature of Ne as a reference temperature by making correction for the deviation from the ideal gas using theoretical values of the second and third virial coefficients down to 2.6 K, which is the lowest temperature of the theoretical values of the third virial coefficient. T values obtained using this method agree well with those obtained from the single-isotherm fit. We also found that the second virial coefficient obtained by the single-isotherm fit to experimental results agrees well with that obtained by the single-isotherm fit to the theoretically expected behavior of \(^{3}\)He gas with the theoretical second and third virial coefficients at four gas densities used in the present work.  相似文献   

17.
The \(^{3}\)He impurity influence on the oscillations of a quartz resonator and thus its drag coefficient in a laminar flow of a superfluid \(^{3}\)He–\(^{4}\)He mixture has been investigated. The temperature dependences of the resonance curves were measured on quartz tuning forks with a resonance frequency 32 kHz in vacuum in superfluid mixtures with \(^{3}\)He concentrations of \(x_{3}=0.05\) and 0.15 in a wide range of driving forces at temperatures from 0.5–2.5 K. The results obtained were used to plot the temperature dependence of the drag coefficient. With the help of the normalization on the effective area of the oscillating body, the concentration dependence of the drag coefficient of the quartz tuning fork and the vibrating sphere in superfluid solutions has been constructed and analyzed.  相似文献   

18.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

19.
An electrochemical cell with two ion-selective electrodes (Na\(^{+}\) glass) and (Cl\(^{-}\) solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO\(_{3}\) at 308.15 K. The experiments were conducted at fixed molality of NaNO\(_{3}\) (0.1 m) and various molalities of glycine (0–1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.  相似文献   

20.
Aggregate packing and -void saturation in mortar and concrete proportioning   总被引:1,自引:1,他引:0  
Proportioning was studied by measuring aggregate packing (C) and filling of aggregate void space (1?C) with varying volumes of cement paste (\(V_{\rm p}\)) or matrix (\(V_{\rm matrix}\)), i.e., all material <0.125 mm. Eleven widely different normal density aggregates with C = 0.57 to 0.71, i.e., aggregate void content (1?C) = 0.29 to 0.43, were used at constant w/c = 0.38 and flowing consistency and varying dosage of water reducer and paste- and matrix volume. Analysing plots of four excess phase volumes (paste with/without air, matrix with/without air) versus aggregate void space showed constant aggregate void saturation ratios. Both paste- and matrix-aggregate void saturation ratio can be used with the best estimate (\(V_{\rm p}-V_{\rm air})/{(1-C)}=1.15\) per \(\hbox{m}^{3}\). Including air voids in paste- or matrix volume improved correlation so air void content must be included in the normalized paste aggregate void saturation ratio (\(k=V_{\rm p}\)/[(1?C) \(V_{\rm tot}\)]). Simple measurements of aggregate packing are thus very useful. Cost per unit material, per unit fresh (slump, flow diameter) or hardened (compressive strength) property were used to show the cost efficiency of the mixes. The ranking of cost/MPa strength and cost/mm consistency is similar to ranking of total concrete cost for the 11 aggregates with a certain scatter though.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号