首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
Objective: Deficits in visual perception and working memory are commonly observed in neuropsychiatric disorders and have been investigated using functional MRI (fMRI). However, interpretation of differences in brain activation may be confounded with differences in task performance between groups. Differences in task difficulty across conditions may also pose interpretative issues in studies of visual processing in healthy subjects. Method: To address these concerns, the present study characterized brain activation in tasks that were psychometrically matched for difficulty; fMRI was used to assess brain activation in 10 healthy subjects during discrimination and working memory judgments for static and moving stimuli. For all task conditions, performance accuracy was matched at 70.7%. Results: Areas associated with V2 and V5 in the dorsal stream were activated during motion processing tasks and V4 in the ventral stream were activated during form processing tasks. Frontoparietal areas associated with working memory were also statistically significant during the working memory tasks. Conclusions: Application of psychophysical methods to equate task demands provides a practical method to equate performance levels across conditions in fMRI studies and to compare healthy and cognitively impaired groups at comparable levels of effort. These psychometrically matched tasks can be applied to patients with a variety of cognitive disorders to investigate dysfunction of multiple a priori defined brain regions. Measuring the changes in typical activation patterns in patients with these diseases can be useful for monitoring disease progression, evaluating new drug treatments, and possibly for developing methods for early diagnosis. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

2.
We have used optical imaging based on intrinsic signals to explore the functional architecture of owl monkey area MT, a cortical region thought to be involved primarily in visual motion processing. As predicted by previous single-unit reports, we found cortical maps specific for the direction of moving visual stimuli. However, these direction maps were not distributed uniformly across all of area MT. Within the direction-specific regions, the activation produced by stimuli moving in opposite directions overlapped significantly. We also found that stimuli of differing shapes, moving in the same direction, activated different cortical regions within area MT, indicating that direction of motion is not the only parameter according to which area MT of owl monkey is organized. Indeed, we found clear evidence for a robust organization for orientation in area MT. Across all of MT, orientation preference changes smoothly, except at isolated line- or point-shaped discontinuities. Generally, paired regions of opposing direction preference were encompassed within a single orientation domain. The degree of segregation in the orientation maps was 3-5 times that found in direction maps. These results suggest that area MT, like V1 and V2, has a rich and multidimensional functional organization, and that orientation, a shape variable, is one of these dimensions.  相似文献   

3.
We have examined the activity levels produced in various areas of the human occipital cortex in response to various motion stimuli using functional magnetic resonance imaging (fMRI) methods. In addition to standard luminance-defined (first-order) motion, three types of second-order motion were used. The areas examined were the motion area V5 (MT) and the following areas that were delineated using retinotopic mapping procedures: V1, V2, V3, VP, V3A, and a new area that we refer to as V3B. Area V5 is strongly activated by second-order as well as by first-order motion. This activation is highly motion-specific. Areas V1 and V2 give good responses to all motion stimuli, but the activity seems to be related primarily to the local spatial and temporal structure in the image rather than to motion processing. Area V3 and its ventral counterpart VP also respond well to all our stimuli and show a slightly greater degree of motion specificity than do V1 and V2. Unlike V1 and V2, the response in V3 and VP is significantly greater for second-order motion than for first-order motion. This trend is evident, but less marked, in V3A and V3B and absent in V5. The results are consistent with the hypothesis that first-order motion sensitivity arises in V1, that second-order motion is first represented explicitly in V3 and VP, and that V5 (and perhaps also V3A and V3B) is involved in further processing of motion information, including the integration of motion signals of the two types.  相似文献   

4.
A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.  相似文献   

5.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

6.
We used functional magnetic resonance imaging (fMRI) during storage of the motion aftereffect (MAE) to examine the relationship between motion perception and neural activity in the human cortical motion complex MT+ (including area MT and adjacent motion-selective cortex). MT+ responds not only to physical motion but also to illusory motion, as in the MAE when subjects who have adapted to continuous motion report that a subsequent stationary test stimulus appears to move in the opposite direction. In the phenomenon of storage, the total decay time of the MAE is extended by inserting a dark period between adaptation and test phases. That is, when the static test pattern is presented after a storage period equal in duration to the normal MAE, the illusory motion reappears for almost as long as the original effect despite the delay. We examined fMRI activation in MT+ during and after storage. Seven subjects viewed continuous motion, followed either by an undelayed stationary test (immediate MAE) or by a completely dark storage interval preceding the test (stored MAE). Like the perceptual effect, activity in MT+ dropped during the storage interval then rebounded to reach a level much higher than after the same delay without storage. Although MT+ activity was slightly enhanced during the storage period following adaptation to continuous motion (compared with a control sequence in which the adaptation grating oscillated and no MAE was perceived), this enhancement was much less than that observed during the perceptual phenomenon. These results indicate that following adaptation, activity in MT+ is pronounced only with the presentation of an appropriate visual stimulus, during which the MAE is perceived.  相似文献   

7.
We have previously shown that some neurons in extrastriate area MT are capable of signaling the global motion of complex patterns; neurons randomly sampled from V1, on the other hand, respond only to the motion of individual oriented components. Because only a small fraction of V1 neurons projects to MT, we wished to establish the processing hierarchy more precisely by studying the properties of those neurons projecting to MT, identified by antidromic responses to electrical stimulation of MT. The neurons that project from V1 to MT were directionally selective and, like other V1 neurons, responded only to the motion of the components of complex patterns. The projection neurons were predominantly "special complex," responsive to a broad range of spatial and temporal frequencies, and sensitive to very low stimulus contrasts. The projection neurons thus comprise a homogeneous and highly specialized subset of V1 neurons, consistent with the notion that V1 acts as clearing house of basic visual measurements, distributing information appropriately to higher cortical areas for specialized analysis.  相似文献   

8.
Describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1→V2, V1→MT, and V1→V2→MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. It also suggests that the static form system generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. Data on short- and long-range apparent motion percepts are explained including beta, split, gamma and reverse-contrast gamma, and delta motions, as well as visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form–color interactions; and binocular interactions of flashes to different eyes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
The effects of V4, MT, and combined V4 + MT lesions were assessed on a broad range of visual capacities that included measures of contrast sensitivity, wavelength and brightness discrimination, form vision, pattern vision, motion and flicker perception, stereopsis, and the selection of stimuli that were less prominent than those with which they appeared in stimulus arrays. The major deficit observed was a loss in the ability, after V4 lesions, to select such less prominent stimuli; this was the case irrespective of the manner in which the stimulus arrays were made visible, using either luminance, chrominance, motion, or stereoscopic depth as surface media. In addition, V4 lesions yielded mild deficits in color, brightness, and form vision whereas MT lesions yielded mild to moderate deficits in motion and flicker perception. Both lesions produced mild deficits in contrast sensitivity, shape-from-motion perception, and yielded increased reaction times on many of the tasks. The impairment resulting from combined V4 and MT lesions was not greater than the sum of the deficits of either lesion. None of the lesions produced significant deficits in stereopsis. The findings suggest that (1) area V4 is part of a neural system that is involved in extracting stimuli from the visual scene that elicit less neural activity early in the visual system than do other stimuli with which they appear and (2) several other extrastriate regions and more than just two major cortical processing streams contribute to the processing of basic visual functions in the extrastriate cortex.  相似文献   

10.
How are second-order (texture-defined) and third-order (pattern-tracking) motions processed in our brains? As shown here in the context of an ambiguous motion task involving a nominal second-order stimuli first devised by Werkhoven et al., [Werkhoven, P., Sperling, G. & Chubb, C. (1993) Vision Res. 33, 463-485.], the observers fell into two distinct groups based on the direction of perceived motion. The differences were interpreted in terms of the algorithms used to extract motion: one group by using a second-order motion process and the other by using a third-order motion process. This was investigated further using a dual-task paradigm in which the interference between two tasks indicated the nature of processing involved. Observers who used third-order motion processing experienced interference with letter recognition and a more severe interference in dual third-order motion tasks. Observers who used second-order motion processing experienced interference with another second-order motion detection but not with letter recognition. Insofar as task interference implies the need for attention, the complex interference effects and the apparently paradoxical interference effects of second-order motion perception imply that there are multiple forms of attention. Whether two tasks interfere depends on whether they require the same form of attention. Insofar as spatio-temporal processing is assumed to be carried out in the dorsal stream and pattern recognition in the ventral stream, the interference patterns suggest that second-order motion may be computed entirely in the dorsal stream, and third-order motion may involve two computational processes, one of which shares computational resources with the letter recognition task in the ventral stream.  相似文献   

11.
We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal-ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.  相似文献   

12.
Edges are important in the interpretation of the retinal image. Although luminance edges have been studied extensively, much less is known about how or where the primate visual system detects boundaries defined by differences in surface properties such as texture, motion or binocular disparity. Here we use functional magnetic resonance imaging (fMRI) to localize human visual cortical activity related to the processing of one such higher-order edge type: motion boundaries. We describe a robust fMRI signal that is selective for motion segmentation. This boundary-specific signal is present, and retinotopically organized, within early visual areas, beginning in the primary visual cortex (area V1). Surprisingly, it is largely absent from the motion-selective area MT/V5 and far extrastriate visual areas. Changes in the surface velocity defining the motion boundaries affect the strength of the fMRI signal. In parallel psychophysical experiments, the perceptual salience of the boundaries shows a similar dependence on surface velocity. These results demonstrate that information for segmenting scenes by relative motion is represented as early as V1.  相似文献   

13.
Object substitution masking is a form of visual backward masking in which a briefly presented target is rendered invisible by a lingering mask that is too sparse to produce lower image-level interference. Recent studies suggested the importance of an updating process in a higher object-level representation, which should rely on the processing of visual motion, in this masking. Repetitive transcranial magnetic stimulation (rTMS) was used to investigate whether functional suppression of motion processing would selectively reduce substitution masking. rTMS-induced transient functional disruption of cortical area V5/MT+, which is important for motion analysis, or V1, which is reciprocally connected with V5/MT+, produced recovery from masking, whereas sham stimulation did not. Furthermore, masking remained undiminished following rTMS over the region 2 cm posterior to V5/MT+, ruling out nonspecific effects of real stimulation and confirming regional specificity of the rTMS effect. The results suggest that object continuity via the normal function of the visual motion processing system might in part contribute to this masking. The relation of these findings to the reentrant processing view of object substitution masking and other visual phenomena is discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Extrastriate cortical area MT is thought to process behaviorally important visual motion signals. Psychophysical studies suggest that visual motion signals may be analyzed by multiple mechanisms, a "first-order" one based on luminance, and a "second-order" one based upon higher level cues (e.g. contrast, flicker). Second-order motion is visible to human observers, but should be invisible to first-order motion sensors. To learn if area MT is involved in the analysis of second-order motion, we measured responses to first- and second-order gratings of single neurons in area MT (and in one experiment, in area V1) in anesthetized, paralyzed macaque monkeys. For each neuron, we measured directional and spatio-temporal tuning with conventional first-order gratings and with second-order gratings created by spatial modulation of the flicker rate of a random texture. A minority of MT and V1 neurons exhibited significant selectivity for direction or orientation of second-order gratings. In nearly all cells, response to second-order motion was weaker than response to first-order motion. MT cells with significant selectivity for second-order motion tended to be more responsive and more sensitive to luminance contrast, but were in other respects similar to the remaining MT neurons; they did not appear to represent a distinct subpopulation. For those cells selective for second-order motion, we found a correlation between the preferred directions of first- and second-order motion, and weak correlations in preferred spatial frequency. These cells preferred lower temporal frequencies for second-order motion than for first-order motion. A small proportion of MT cells seemed to remain selective and responsive for second-order motion. None of our small sample of V1 cells did. Cells in this small population, but not others, may perform "form-cue invariant" motion processing (Albright, 1992).  相似文献   

15.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

16.
The cortical connections of visual area 3 (V3) and the ventral posterior area (VP) in the macaque monkey were studied by using combinations of retrograde and anterograde tracers. Tracer injections were made into V3 or VP following electrophysiological recording in and near the target area. The pattern of ipsilateral cortical connections was analyzed in relation to the pattern of interhemispheric connections identified after transection of the corpus callosum. Both V3 and VP have major connections with areas V2, V3A, posterior intraparietal area (PIP), V4, middle temporal area (MT), medial superior temporal area (dorsal) (MSTd), and ventral intraparietal area (VIP). Their connections differ in several respects. Specifically, V3 has connections with areas V1 and V4 transitional area (V4t) that are absent for VP; VP has connections with areas ventral occipitotemporal area (VOT), dorsal prelunate area (DP), and visually responsive portion of temporal visual area F (VTF) that are absent or occur only rarely for V3. The laminar pattern of labelled terminals and retrogradely labeled cell bodies allowed assessment of the hierarchical relationships between areas V3 and VP and their various targets. Areas V1 and V2 are at a lower level than V3 and VP; all of the remaining areas are at a higher level. V3 receives major inputs from layer 4B of V1, suggesting an association with the magnocellular-dominated processing stream and a role in routing magnocellular-dominated information along pathways leading to both parietal and temporal lobes. The convergence and divergence of pathways involving V3 and VP underscores the distributed nature of hierarchical processing in the visual system.  相似文献   

17.
Functional brain imaging studies have indicated that several cortical and subcortical areas active during actual motor performance are also active during imagination or mental rehearsal of movements. Recent evidence shows that the primary motor cortex may also be involved in motor imagery. Using whole-scalp magnetoencephalography, we monitored spontaneous and evoked activity of the somatomotor cortex after right median nerve stimuli in seven healthy right-handed subjects while they kinesthetically imagined or actually executed continuous finger movements. Manipulatory finger movements abolished the poststimulus 20-Hz activity of the motor cortex and markedly affected the somatosensory evoked response. Imagination of manipulatory finger movements attenuated the 20-Hz activity by 27% with respect to the rest level but had no effect on the somatosensory response. Slight constant stretching of the fingers suppressed the 20-Hz activity less than motor imagery. The smallest possible, kinesthetically just perceivable finger movements resulted in slightly stronger attenuation of 20-Hz activity than motor imagery did. The effects were observed in both hemispheres but predominantly contralateral to the performing hand. The attempt to execute manipulatory finger movements under experimentally induced ischemia causing paralysis of the hand also strongly suppressed 20-Hz activity but did not affect the somatosensory evoked response. The results indicate that the primary motor cortex is involved in motor imagery. Both imaginative and executive motor tasks appear to utilize the cortical circuitry generating the somatomotor 20-Hz signal.  相似文献   

18.
We recorded the activity of single neurons in the middle temporal (MT) and middle superior temporal (MST) visual areas in two macaque monkeys while the animals performed a smooth pursuit target selection task. The monkeys were presented with two moving stimuli of different colors and were trained to initiate smooth pursuit to the stimulus that matched the color of a previously given cue. We designed these experiments so that we could separate the component of the neuronal response that was driven by the visual stimulus from an extraretinal component that predicted the color or direction of the selected target. We found that for all cells in MT and MST the response was primarily determined by the visual stimulus. However, 14% (8 of 58) of MT neurons and 26% (22 of 84) of MST neurons had a small predictive component that was significant at the P < or = 0.05 level. In some cells, the predictive component was clearly related to the color of the intended target, but more often it was correlated with the direction of the target. We have previously documented a systematic shift in the latency of smooth pursuit that depends on the relative direction of motion of the two stimuli. We found that neither the latency nor the amplitude of neuronal responses in MT or MST was correlated with behavioral latency. These results are consistent with a model for target selection in which a weak selection bias for the intended target is amplified by a competitive network that suppresses motion signals related to the nonintended stimulus. It is possible that the predictive component of neuronal responses in MT and MST contributes to the selection bias. However, the strength of the selection bias in MT and MST is not sufficient to account for the high degree of selectivity shown by pursuit behavior.  相似文献   

19.
The visual system is constantly inundated with information received by the eyes, only a fraction of which seems to reach visual awareness. This selection process is one of the functions ascribed to visual attention. Although many studies have investigated the role of attention in shaping neuronal representations in the visual cortex, few have focused on attentional modulation of neuronal signals related to visual motion. Here we report that the responses of direction-selective neurons in monkey visual cortex are greatly influenced by attention, and that this modulation occurs as early in the cortical hierarchy as the level of the middle temporal visual area (MT). Our finding demonstrates a stronger and earlier influence of attention on motion processing along the dorsal visual pathway than previously recognized.  相似文献   

20.
How does the brain process visual information about self-motion? In monkey cortex, the analysis of visual motion is performed by successive areas specialized in different aspects of motion processing. Whereas neurons in the middle temporal (MT) area are direction-selective for local motion, neurons in the medial superior temporal (MST) area respond to motion patterns. A neural network model attempts to link these properties to the psychophysics of human heading detection from optic flow. It proposes that populations of neurons represent specific directions of heading. We quantitatively compared single-unit recordings in area MST with single-neuron simulations in this model. Predictions were derived from simulations and subsequently tested in recorded neurons. Neuronal activities depended on the position of the singular point in the optic flow. Best responses to opposing motions occurred for opposite locations of the singular point in the visual field. Excitation by one type of motion is paired with inhibition by the opposite motion. Activity maxima often occur for peripheral singular points. The averaged recorded shape of the response modulations is sigmoidal, which is in agreement with model predictions. We also tested whether the activity of the neuronal population in MST can represent the directions of heading in our stimuli. A simple least-mean-square minimization could retrieve the direction of heading from the neuronal activities with a precision of 4.3 degrees. Our results show good agreement between the proposed model and the neuronal responses in area MST and further support the hypothesis that area MST is involved in visual navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号