首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Based on the combination of a three-phase diode bridge and a DC/DC boost converter, a new three-phase three-switch three-level pulsewidth modulated (PWM) rectifier system is developed. It can be characterized by sinusoidal mains current consumption, controlled output voltage, and low-blocking voltage stress on the power transistors. The application could be, e.g., for feeding the DC link of a telecommunications power supply module. The stationary operational behavior, the control of the mains currents, and the control of the output voltage are analyzed. Finally, the stresses on the system components are determined by digital simulation and compared to the stresses in a conventional six-switch two-level PWM rectifier system  相似文献   

2.
This paper proposes a novel mains voltage proportional input current control concept eliminating the multiplication of the output voltage controller output and the mains ac phase voltages for the derivation of mains phase current reference values of a three-phase/level/switch pulsewidth-modulated (VIENNA) rectifier system. Furthermore, the concept features low input current ripple amplitude as, e.g., achieved for space-vector modulation, a low amplitude of the third harmonic of the current flowing into the output voltage center point, and a wide range of modulation. The practical realization of the analog control concept as well as experimental results for application with a 5-kW prototype of the pulsewidth-modulated rectifier are presented. Furthermore, a control scheme which relies only on the absolute values of the input phase currents and a modified control scheme which does not require information about the mains phase voltages are presented.  相似文献   

3.
A passive 12-pulse rectifier system, a two-level, and a three-level active three-phase pulsewidth-modulation (PWM) rectifier system are analyzed for supplying the dc-voltage link of a 5-kW variable-speed hydraulic pump drive of an electro-hydrostatic actuator to be employed in future More Electric Aircraft. Weight, volume, and efficiency of the concepts are compared for an input phase voltage range of 98-132 V and an input frequency range of 400-800 Hz. The 12-pulse system shows advantages concerning volume, efficiency, and complexity but is characterized by a high system weight. Accordingly, the three-level PWM rectifier is identified as the most advantageous solution. Finally, a novel extension of the 12-pulse rectifier system by turn-off power semiconductors is proposed which allows a control of the output voltage and, therefore, eliminates the dependency on the mains and load condition which constitutes a main drawback of the passive concept.  相似文献   

4.
In this paper the implementation of a simple yet high performance digital current mode controller that achieves high power factor operation for three phase boost rectifier is described. The indicated objective is achieved without input voltage sensing and without transformation of the control variables into rotating reference frame. The controller uses the concept of resistance emulation for shaping of input current like input voltage in digital implementation. Two decoupled fixed frequency current mode controllers calculate the switching instants for equivalent single phase boost rectifiers. A combined switching strategy is developed in the form of space vectors to simultaneously satisfy the timing requirements of both the current mode controllers in a switching period. Conventional phase locked loop (PLL) is not required as converter switching is self-synchronized with the input voltage. Analytical formula is derived to obtain the steady state stability condition of the converter. A linear, low frequency, small signal model of the three phase boost rectifier is developed and verified by measurement of the voltage control transfer function. In implementation Texas Instruments's DSP TMS320F240F is used as the digital controller. The algorithm is tested on a 10-kW, 700-V dc, three phase boost rectifier.  相似文献   

5.
DC voltage sensorless single-phase PFC converter   总被引:2,自引:0,他引:2  
We propose a simple DC voltage sensorless single phase PFC converter by detecting an AC line voltage waveform. Both DC voltage and AC current sensors used in the conventional PFC converter are not required to construct the control system. The conventional converter circuit with a boost chopper circuit in the DC side from a rectifier circuit is used as the main PFC converter circuit. In the control system, the circuit parameters such as a series inductance L and equivalent load resistance value R/sub d/ are used to generate the sinusoidal current waveform. The DC voltage is directly controlled by the command input signal k/sub d/(=E/sub d//E/sub a/) for the boost chopper circuit. The DC voltage regulation is small because of the feed forward control for the AC line voltage E/sub a/ and no dependence of the circuit parameters. The sinusoidal current waveform in phase with the AC line voltage can be obtained. The feasibility of the proposed control system is verified by some simulation and experimental results.  相似文献   

6.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current-switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM switch model is used to predict the system performance. A prototype rated at 1 kW, operating 50 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage 400 V/sub dc/ has been implemented in laboratory. An efficiency of 97.3% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

7.
The three-phase Delta-Rectifier is formed by a delta-connection of single-phase pulsewidth modulation (PWM) rectifier modules and has the advantage that it can provide full rated output power in the case of a mains phase loss. In this paper the Delta-Rectifier, implemented with a standard (two-level and/or three-level) boost converter, is analyzed based on an equivalent star connection. Analysis of the Delta-Rectifier shows a redundancy in the switching states concerning the input voltage formation. Furthermore, the Delta-Rectifier has reduced current ripple in the mains phase currents if the modulation is implemented with synchronized PWM. A disadvantage of two-level Delta-Rectifier is the higher voltage stress on the switching devices; however this is mitigated when the boost converter is implemented with a three-level topology as realized for a 10.5-kW laboratory prototype. The Delta-Rectifier concept is proposed based on theoretical considerations and is verified experimentally. The influence of non-idealities on the current ripple formation in the practical realization is analyzed and a high quality mains phase current is demonstrated  相似文献   

8.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

9.
A control scheme for the single-phase three-level pulse-width modulation active rectifier is proposed. A hysteresis current control scheme is used to draw the sinusoidal line current in phase with the mains voltage. The line current command is derived from a voltage controller and a phase-locked loop circuit. The blocking voltage of each power device is clamped to half of the DC-link voltage in the proposed active rectifier. In order to generate the three-level voltage pattern on the DC side of the active rectifier, the region detector of the line voltage, capacitor voltage compensator and hysteresis current comparator are employed in the adopted control algorithm to achieve high input power factor and low current distortion. To investigate the proposed control algorithm, the adopted rectifier is simulated and experimental tests from a laboratory prototype undertaken.  相似文献   

10.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-voltage-switching PWM (ZVS-PWM) auxiliary circuit is configured in the presented ZVS-PWM rectifier to perform ZVS in the main switches and the passive switches, and zero-current switching in the auxiliary switch. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZVS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path, and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZVS-PWM rectifier in one switching period are described. A prototype rated at 1 kW, operating 80 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/ has been implemented in the laboratory. An efficiency of 96.7% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

11.
A PFC converter employing compound active clamping technique is proposed. It can effectively reduce the loss caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft-switching (ZVS) under certain conditions. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation and theoretical analysis are presented. The maximum voltage stress of switches and the soft-switching region with relation to the resonant inductor and resonant capacitance are investigated. A prototype of 1kW is built to test the proposed topology. The input voltage is from 90V/sub rms/ to 265V/sub rms/. The output voltage is 380V. The operation frequency is 100 kHz. The measured efficiency at full load with different input voltage is from 93.5% to 97.8%.  相似文献   

12.
A control strategy which allows conventional voltage-source current-controlled (VSCC) pulsewidth modulation (PWM) rectifiers to work simultaneously as active power filters is presented. The proposed control strategy also allows compensating the system power factor and compensating unbalanced loads. The measurement and/or calculation of the harmonics and reactive power are not required, making the proposed control scheme very simple. The active front-end rectifier acts directly on the mains line currents, forcing them to be sinusoidal and in phase with the mains voltage supply. To improve the dynamic of the system, the amplitude of the current is controlled by a fuzzy system, which adjusts the DC-link voltage of the PWM rectifier. The strategy is based on connecting all the polluting loads between the PWM rectifier and their input current sensors. The main advantages of this approach are the following: (1) there is no need to install a specially dedicated active power filter; (2) it also works simultaneously as a power factor compensator; and (3) no special and complicated calculations are required for harmonic elimination. The viability of the proposed active front-end rectifier is proved by simulation and with experimental results obtained from a 2 kVA PWM prototype  相似文献   

13.
This paper describes a technique for shaping the input current to a three-phase diode rectifier using a two-switch series-connected dual boost converter and a three-phase bidirectional switch circuit. Circuits are described for generating a single voltage DC output, “single DC-rail”, or a dual output DC voltage using center-tapped capacitors, “split DC-rail”. Both rectifier types can be operated with the boost inductors located either on the DC or the AC side of the rectifier. The resultant rectifier circuit configurations have an excellent immunity to the “shoot-through” fault condition and use active switching elements with low per-unit current ratings and low switching losses. These features increase the reliability factor and lower the cost penalty associated with unity fundamental power factor three-phase rectifiers. Test results are presented for the rectifiers using simulation and experimental results  相似文献   

14.
This paper proposes a control method that can balance the input currents of the three-phase three-wire boost rectifier under unbalanced input voltage condition. The control objective is to operate the rectifier in the high-power-factor mode under balanced input voltage condition but to give overriding priority to the current balance function in case of unbalance in the input voltage. The control structure has been divided into two major functional blocks. The inner loop current-mode controller implements resistor emulation to achieve high-power-factor operation on each of the two orthogonal axes of the stationary reference frame. The outer control loop performs magnitude scaling and phase-shifting operations on current of one of the axes to make it balanced with the current on the other axis. The coefficients of scaling and shifting functions are determined by two closed-loop proportional-integral (PI) controllers that impose the conditions of input current balance as PI references. The control algorithm is simple and high performing. It does not require input voltage sensing and transformation of the control variables into a rotating reference frame. The simulation results on a MATLAB-SIMULINK platform validate the proposed control strategy. In implementation Texas Instrument's digital signal processor TMS320F240F is used as the digital controller. The control algorithm for high-power-factor operation is tested on a prototype boost rectifier under nominal and unbalanced input voltage conditions.  相似文献   

15.
Connecting three-phase rectifier systems in parallel shows many advantages as compared to a single rectifier system with higher output power, such as higher reliability, smaller current and voltage ripple components, lower filtering effort, or higher system bandwidth. However, current unbalance or circulating currents can occur for modular design. In this paper, the parallel connection of two three-phase three-switch buck-type unity-power-factor pulsewidth-modulation rectifier systems is experimentally investigated for a 10-kW digital-signal-processor-controlled prototype. A space vector modulation scheme is employed showing all the advantages of an interleaved operation. Three control schemes for active dc-link current balancing are described employing an additional free-wheeling state that allows to influence the rate of change of the dc-link currents and can therefore be used for dc-link current balancing. The control schemes differ concerning control action and additional switching losses. Simulation and experimental results confirm the theoretical considerations: The dc-link current-balancing capability of the different control methods is compared, and the influence of the additional free-wheeling state on switching losses and operation behavior is investigated. The most advantageous control method, which employs a hysteresis controller and shows limited switching losses, is selected. The analysis of the mains behavior shows an improvement as compared to a single rectifier operation.  相似文献   

16.
A single-phase boost rectifier system with conventional low-bandwidth voltage loop exhibits poor dynamic response. A simple method is presented to improve the dynamic response of the rectifier without affecting its steady-state performance. A fast voltage controller is used to improve the dynamic response of the rectifier. The increased low-frequency ripple at the output of the voltage controller is filtered out using a new filter. Design methodology for the voltage loop is presented. The filter is simple enough for analog and digital implementations. Low input current distortion, fast voltage-loop response, and improved dynamic response against line and load disturbances are demonstrated experimentally on a 300-W digitally controlled boost rectifier operating at a switching frequency of 100 kHz.   相似文献   

17.
To obtain a stable output voltage from a recently-developed rectification circuit called a quantum boost series resonant rectifier (QBSRR), two control schemes, digital PI (proportional-integral) control and deadbeat control, are derived for a computer-based system. Since the output voltage regulation loop has a sampling time corresponding to the zero crossing point of the AC line voltage, the output voltage can be controlled regardless of the 120 Hz ripple component. By deriving a simple and exact model for the current program loop (open loop) of a QBSRR and using the pole-assignmenl technique, the controller gains can be systematically designed in the digital PI control scheme. The deadbeat control scheme is also developed to maintain fast dynamic performance in the presence of any load variations. In this control scheme, the controller gain is adjusted in accordance with the load information using a load estimation method. Simulation and experimental results are presented to verify the usefulness of these two control schemes.  相似文献   

18.
A new control scheme for a single-phase bridge rectifier with three-level pulsewidth modulation is proposed to achieve high power factor and low current distortion. The main circuit consists of a diode-bridge rectifier, a boost inductor, two AC power switches, and two capacitors. According to the proposed control scheme based on a voltage comparator and hysteresis current control technique, the output capacitor voltages are balanced and the line current will follow the supply current command. The supply current command is derived from a DC-link voltage regulator and an output power estimator. The major advantage of using a three-level rectifier is that the blocking voltage of each AC power device is clamping to half of the DC-link voltage and the generated harmonics of the three-level rectifier are less than those of the conventional two-level rectifier. There are five voltage levels (0, ±VDC/2, ±VDC) on the AC side of the diode rectifier. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental tests  相似文献   

19.
A three-phase three-switch buck-type pulsewidth modulation rectifier is designed for telecom applications in this paper. The rectifier features a constant 400-V output voltage and 5-kW output power at the three-phase 400-V mains. The principle of operation and the calculation of the relative on-times of the power transistors are described. Based on analytical relationships the stresses of the active and passive components are determined and the accuracy of the given calculations is verified by digital simulations. Exemplarily, a 5-kW power converter is then designed based on the analytical expressions and on switching loss measurements from a hardware prototype constructed with insulated gate bipolar transistor/diode power modules. The loss distribution of the components, the total efficiency, and the junction temperatures of the semiconductors are then evaluated in dependency on the operating point. Finally, the trade-off between the selected switching frequency and the admissible power range for the realized design is shown and a total efficiency of 95.0% is measured on the hardware prototype, where an excellent agreement with the theoretically evaluated efficiency is shown  相似文献   

20.
This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号