首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The discovery of the superconducting electron-doped compound Nd185Ce015CuO4?δ has stimulated great interest in its micro- and crystal structure, since the superconducting properties depend on parameters such as nonstoichiometry, phase composition, heat treatment and microstructure. The work presented herein is focused on the determination of the oxygen environment in the undoped parent compound Nd2CuO4 and in the structural modification Nd2CuO35 The analysis of the oxygen K (O 1s) edge extended electron energy-loss fine structure (EXELFS) of the tetragonal parent compound Nd2CuO4 and of the orthorhombic modification Nd2CuO35 is reported by using electron energy-loss spectroscopy in combination with transmission electron microscopy. Nd2CuO35 is produced by in situ heating and reduction of Nd2CuO4 in the transmission electron microscope. The EXELFS of the O 1s electron energy-loss edges is analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared with ab initio multiple scattering EXAFS calculations for both structural modifications. Highly accurate information on the local atomic environment of the oxygen atoms in Nd2CuO35 is obtained from EXELFS analysis using Nd2CuO4 as a standard. The results are in accordance with the structural data gained from X-ray diffraction analysis. This applies especially to the more complicated structure of Nd2CuO35 determined recently.  相似文献   

2.
Crack/particle interactions in alumina/silicon carbide nanocomposites have been investigated by scanning electron microscopy and transmission electron microscopy, with cracks induced by Vickers microindentation. Intergranular cracks are frequently deflected into grains by SiC particles on grain boundaries inclined to the average direction of crack propagation. This mechanism is proposed to explain the change in the fracture mode from intergranular fracture for monolithic alumina to predominantly transgranular fracture for the nanocomposites. Neither stress-induced microcracking around SiC particles nor significant crack deflection by intragranular particles was found to occur in the nanocomposites. It is argued that an addition of nanoparticles may not be a promising approach for increasing the toughness of alumina.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号