首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The quality of the interfacial bonding between asphalt binder and aggregates plays a significant role in determining the durability of asphalt mixtures. Warm mix asphalt (WMA) modifiers have been used extensively in the last decade primarily to reduce production and compaction temperatures as well as to improve workability of asphalt mixtures. This study aimed to provide better understanding of the effects of these WMA modifiers on the interfacial bonding between asphalt binders and aggregates. The evaluation focused on measuring surface energy of binders in unaged and aged states and aggregates and then calculating energy parameters that describe the potential of a given asphalt-aggregate combination to resist fatigue cracking and moisture damage. Results show that the combination of asphalt-WMA additive, as well as the content applied of WMA additive has a significant impact on the fatigue cracking and moisture damage resistance. The results suggest that it is poor practice to use a given type and percentage of WMA modifier without regard for binder type. Instead, test methods are recommended to evaluate the compatibility of asphalt binder, WMA additive type/content, and aggregates for improved performance at different conditions.  相似文献   

2.
Warm mix asphalt (WMA) has become very popular in asphalt pavement construction because it allows reducing both energy consumptions and carbon emissions. WMA can be obtained by using different types of additives and can be produced, applied, and compacted at temperatures 20–40 °C lower than hot mix asphalt. WMA additives allow reducing the working temperatures without compromising the final performance of the asphalt concrete. Many WMA additives are available on the worldwide market and some of them reduce the viscosity of asphalts binder (organic additives or foam) whereas others do not act on this sense (chemical additives). This study focuses on the effect of chemical additives on the performance of asphalt binders for WMA production. To this purpose, a neat bitumen, a polymer modified bitumen (PMB) and two different chemical additives were selected. All the binders were characterized through conventional tests, DSR, MSCR, FTIR and microscopic analysis. The result clearly showed that the influence of the chemical additives on the neat bitumen is negligible or non-existent. On the contrary, significant changes were observed in the modified bitumen properties. Specifically, chemical additives reduce the viscosity temperature susceptibility of PMBs in the temperature range between 80 and 140 °C, increase the rutting resistance potential and the elastic response of PMBs at high temperatures. Moreover, a morphological inspection supported the modifications observed in the rheological properties of PMBs.  相似文献   

3.
This paper presents results of a study on hot-mixed and warm-compacted asphalt incorporating warm mix technologies for use in emergency construction following a natural disaster. Case studies were first reviewed to investigate feasibility of the concept. Next, an overall emergency paving framework was developed, complemented by a two-component laboratory investigation. Component one developed a series of short-term ageing protocols for use in preparation of test specimens; component two evaluated those specimens for compactability and rut resistance. Results indicated that (1) material could be hauled up to 6 h and still be effectively used in emergency paving, (2) the two warm mix additives studied improved compactability of hot-mixed and warm-compacted asphalt and (3) rut resistance was acceptable for emergency applications. A discussion on the post natural disaster permanent residual value of the hot-mixed and warm-compacted material is also provided.  相似文献   

4.
Warm mix asphalt (WMA) is a new research topic in the field of road pavement materials. This technology allows lower energy consumption and greenhouse gas (GHG) emissions by reducing compaction and placement temperatures of the asphalt mixtures. However, this technology is still under study, and the influence of the WMA additives has yet to be investigated thoroughly and clearly identified, especially in the case of crumb rubber modified (CRM) binders.In order to study the effect that different types and quantities of organic waxes have on the high and intermediate temperature properties of 15 % and 20 % CRM binders, a dynamic shear rheometer (DSR) was used. Using Black diagrams, the rheological behaviour of the binders for the defined range of test temperature and frequency are summarised in a single diagram. In this way, a preliminary evaluation of the rheological behaviour in the extended domain of time and temperature can be attained as well as the effectiveness of the time–temperature superposition principle (TTSP) on the materials under study. Creep tests were also performed in order to evaluate the differences regarding mechanical response due to the addition of rubber and WMA additives, and particularly the ability to recover the strain at high temperatures.The results of this study reveal that these binders do not conform to the Time Temperature Superposition Principle (TTSP) and their rheological behaviour is strongly affected by the interaction of waxes and bituminous matrix and thus generally exhibited a higher elasticity compared to the corresponding control binder. The creep test results carried out proved the enhancement of elasticity and the resistance to permanent deformation produced by the addition of waxes. The WMA additives significantly lower the maximum deformation when compared to the control binders and slightly increased their elastic recovery.  相似文献   

5.
6.
In a recent article, Narayan et al. [Narayan, S.P.A., et al., 2012b. Nonlinear viscoelastic response of asphalt binders: experimental study of relaxation of torque and normal force in torsion. Mechanics Research Communications, 43, 66–74] recorded both torque and normal force in torsional relaxation experiments on asphalt binders. The data are three-dimensional and thus, require interpretation using three-dimensional constitutive relations. In this article, we develop such a three-dimensional nonlinear viscoelastic model for asphalt binder. The predictions of the model fit the experimental data reasonably well. While there are already some three-dimensional constitutive relations available in the literature for asphalt binders which can describe the normal forces that are developed during torsion, they do not capture the relaxation behaviour presented by Narayan et al. (2012b). This new model, however, captures most of the key features of the experimental data including the development of normal forces in torsion and the relaxation behaviour. In this respect, the new model performs considerably better than the existing models.  相似文献   

7.
As a result of repeated rehabilitation efforts over the past few decades, often asphalt pavements have become deep-strength pavements. Consequently, top-down cracking has become a primary distress type. In particular, the top-down cracking performance of warm mix asphalt (WMA) pavements, i.e. how does it compare with similar hot mix asphalt (HMA) pavements is largely unclear mainly due to the lack of field performance data. This paper presents an effort of monitoring the top-down cracking performance of 28 pavement projects including WMA pavements and their corresponding HMA control pavements with service lives ranging between 4 and 10 years. These pavements cover different climate zones, WMA technologies, service years, pavement structures and traffic volume levels. Two rounds of distress surveys were conducted at a two-year interval, and the material (asphalt binder and mixture) properties of the pavements were determined using field cores. The top-down cracking performance of the HMA and WMA pavements was compared based on the first and second round distress surveys. It was found that the HMA and WMA pavement in general exhibited comparable performance. The significant determinants (material properties) for top-down cracking were determined, which were vertical failure deformation of mixes measured at 20 °C from indirect tension test.  相似文献   

8.
The asphalt industry is constantly attempting to reduce its emissions as concerns are growing on global warming. This is done by decreasing the mixing and compaction temperatures of asphalt mixtures without affecting the properties of the mix which is possible through numerous available technologies in the industry. The production of asphalt mix is done by warm mix asphalt (WMA) technology at considerably lower temperatures (120°C or lower). Less energy consumption, lower mixing and compaction temperatures, early site opening, reduced ageing, fewer emissions, cool weather paving, better workability and, finally, an extended paving window could be mentioned as some of the benefits obtained by using the WMA. This paper presents the WMA techniques and technologies such as foaming techniques, wax and chemical additives techniques. Additionally, the performance of WMA popular technologies such as Sasobit®, WAM®-Foam, Evotherm®, Low energy asphalt, Rediset® WMX and REVIX? are fully described.  相似文献   

9.
It is clear that the purpose of mixture design is to select optimum asphalt content for a desired aggregate structure to meet the prescribed criteria. Aggregate makes up high proportion of volume and mass of mixtures; hence, it is considered as an important constituent of asphalt concrete. This study postulates that the gradation is an important characteristic of the aggregate in adoption of the optimum mixture. One aggregate source, three gradations and different percentages of Sasobit® was used to manufacture hot mix asphalt and warm mix asphalt. The test results indicated that the aggregate gradation affects the rutting resistance and especially the moisture susceptibility of the introduced mixtures, differently. Rutting resistance was evaluated using the flow number parameter, and in order to determine the moisture sensitivity mechanism, a mechanical and visual inspection tests were carried out. At the end, it is concluded that the optimum aggregate gradation for these two types of mixtures is different.  相似文献   

10.
11.
The objective of this study is to expose the effect of a variety of variables including three reclaimed asphalt pavement (RAP) contents, two warm mix asphalt (WMA) additives and a rejuvenating agent (or lack of) on the performance of WMA containing (WMA–RAP) materials. A laboratory study was conducted to evaluate the performance of WMA–RAP mixtures through rutting, bending and freeze-thaw splitting tests. Analysis of variance (ANOVA) was performed to analyse the significant effect of the variables on the performance. The tests results showed that the increased RAP content led to an increased rutting resistance and the decreased resistance to low-temperature cracking and moisture damage. The addition of the rejuvenating agent into the WMA–RAP mixtures can significantly improve the low-temperature cracking and moisture resistance. The ANOVA results showed that the RAP content had a significant effect on the rutting and low-temperature cracking resistance, and moreover, the rejuvenating agent (or lack of) had a large effect on the low-temperature cracking and moisture resistance.  相似文献   

12.
为了研究温拌橡胶沥青混合料施工和易性,首先根据不同温拌技术机理选择3种典型温拌剂制作了温拌橡胶沥青,并通过技术指标测试确定了该橡胶沥青的温拌剂掺量,然后通过温拌沥青胶浆粘温关系实验以及不同出料温度下混合料旋转压实特性实验研究了温拌橡胶沥青混合料的施工和易性。结果表明,表面活性温拌剂对橡胶沥青技术指标没有明显影响,有机降粘温拌剂对橡胶沥青各项性能指标有明显影响,推荐该橡胶沥青的Sasobit掺量为2%、Evotherm M1为0.6%与Evotherm DAT为11.1%;温拌橡胶沥青胶浆实验可作为判别表面活性温拌剂温拌效果的一种方法,温拌剂不仅可以改善较低出料温度旋转压实试件的体积参数,还可提高橡胶沥青裹腹率,3种温拌剂都能降低橡胶沥青混合料施工温度20℃以上。  相似文献   

13.
This paper describes testing and evaluation of the fatigue resistance potential of hot‐mix asphalt mixtures using viscoelastic continuum damage analysis, which is based on dynamic modulus determination, a state‐variable approach and damage calculation. The dynamic modulus test for stiffness characterization and the direct tension test for fatigue resistance characterization were used in the testing procedure. The state‐variable approach can be used for numerical computation of a viscoelastic convolution integral. A Nelder–Mead simplex search was used in this study to determine the damage parameter of a stiffness reduction function. The fatigue resistance was evaluated as a function of loading rate, asphalt binder content, modifier (e.g. usage of hydrated lime), and temperature, and was found experimentally to have a strong dependence on these factors.  相似文献   

14.
The aim of this research is to investigate moisture susceptibility, rutting resistance and structural response of rubberised asphalt mixtures containing Warm Mix Asphalt (WMA) additives using Tensile Strength Ratio, dynamic creep test, wheel tracking and indirect resilient modulus. Furthermore, impact of WMA additives on compaction was evaluated by air void content of Marshall specimens. Two types of waxes, namely Sasobit and Rheofalt, and an anti-stripping additive, namely Zycotherm, were used to reduce mixing temperature of rubberised mixtures at concentrations of 0, 5, 10 and 15%. It was proved that not only does small amount of the anti-stripper (0.1%) decrease the production temperature effectively, but it also results in the most moisture damages resistance improvement compared to the waxes. Rheofalt, on the other hand, has the most effectiveness in improvement of rutting resistance and resilient modulus. Finally, Sasobit was found the most effective WMA additive regarding compaction effort efficiency.  相似文献   

15.
Warm mix asphalt (WMA) is a relatively new and emerging technology for the asphalt industry. It offers potential construction and environmental advantages over traditional hot mix asphalt (HMA). However, WMA must perform at least as well as HMA before it can be used extensively. This study evaluates the performance of WMA mixtures and their corresponding HMA control mixtures obtained from various field sites in the state of Washington. Four WMA technologies are examined, including Sasobit® and three water-foaming technologies, Gencor®, Aquablack? and ALmix Water Injection. Performance tests are conducted on the field cores to evaluate and compare the rutting, moisture susceptibility, fatigue and thermal resistance of WMA and HMA, respectively. Also, the extracted binders from the field cores are evaluated. In addition, the early-age field performance of WMA and HMA control pavements are compared.  相似文献   

16.
Observations are reported in uniaxial tensile tests with constant strain rates at moderate finite deformations, as well as in creep and relaxation tests on a thermoplastic elastomer (ethylene–octene copolymer) at room temperature. A constitutive model is developed for the viscoelastic and viscoplastic responses of a polymer at arbitrary three-dimensional deformations with finite strains. A thermoplastic elastomer is treated as an incompressible heterogeneous transient network of strands. Its viscoelastic behavior is associated with separation of active strands from their junctions and merging of dangling strands with the network. The viscoplastic response reflects sliding of junctions between strands with respect to their reference positions. Stress–strain relations are derived by using the laws of thermodynamics. They involve six adjustable parameters that are found by fitting the experimental data. To examine the accuracy of the model predictions, plane-strain compressive tests with constant strain rates and relaxation tests at compression are performed. Good agreement is demonstrated between the observations and the results of numerical simulation.  相似文献   

17.
温拌剂种类及掺量对不同沥青流变性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究温拌剂种类及掺量对沥青流变性能的影响,通过动态剪切流变仪对分别掺加RH和Evotherm温拌剂的SBS改性沥青和基质沥青进行温度扫描试验,分析了它们的复数剪切模量、相位角和车辙因子。结果表明,Evotherm温拌剂在28~52℃能够提升两种沥青抗车辙性能,52℃后效果减弱;并且在28~40℃间可以提高两种沥青弹性恢复性能,40℃后会使SBS改性沥青弹性恢复性能减弱,对基质沥青无影响。增加Evotherm温拌剂掺量,在28~52℃会使温拌SBS改性沥青抗车辙性能提高,使温拌基质沥青抗车辙性能有所减弱,52℃后影响不明显。RH温拌剂在28~46℃对两种沥青抗车辙性能略有不利,但负面作用随温度升高逐渐减弱甚至消失;RH温拌剂能够显著增大两种沥青高温时弹性恢复性能。RH温拌剂掺量增大会使两种沥青抗车辙性能降低,但会使弹性恢复性能增强。  相似文献   

18.
Warm mix asphalt additives are effective in decreasing production, laying and compaction temperatures of asphalt mixes. However, there are still questions concerning influence of warm mix additives on properties of asphalt mixes and pavement performance. This paper presents results of the comprehensive research of viscoelastic behaviour of asphalt mixes and pavement structures with layers made with warm mix asphalt additives at high temperatures. Two additives of significantly different effects on mixes at higher temperatures were selected for analysis, namely aliphatic synthetic wax produced with the use of Fisher–Tropsch method and formulation of surfactant- based molecules (ionic and non-ionic). Viscoelastic properties of mixes with these two additives and, as a reference mix, with neat unmodified asphalt binder were determined in uniaxial compression with sinusoidal loading using Asphalt Mixture Performance Test. The viscoelastic analysis of pavement structures was performed with use of the VEROAD software and data from laboratory testing. Two different pavement structures were analysed, for light and heavy traffic. The temperature distribution in pavement structure during the hottest summer day in northern Poland in 2012 was taken into account. The model of pavement was loaded with moving wheel at different speeds. The analysis has shown that two tested warm mix additives had different effect on viscoelastic transient response at high temperatures. One of them (Fischer–Tropsch wax) evidently caused an increase in resistance of asphalt mix and pavement structure to loading at high temperature. The second additive (formulation of surfactant-based molecules) slightly reduced resistance of asphalt mix and pavement to loading at high temperatures as compared with the reference mix.  相似文献   

19.
The primary objective of this work is to characterize and compare the dynamic mechanical behavior of asphalt concrete mixes with styrene butadiene styrene (SBS) polymer and crumb rubber modified asphalt binders with the behavior of mixes with unmodified viscosity grade asphalt binders. Asphalt binders are characterized for their physical and rheological properties. Simple performance tests like dynamic modulus, dynamic and static creep tests are carried out at varying temperatures and time. Dynamic modulus master curves constructed using numerical optimization technique is used to explain the time and temperature dependency of modified and unmodified asphalt binder mixes. Creep parameters estimated through regression analysis explained the permanent deformation characteristics of asphalt concrete mixes. From the dynamic mechanical characterization studies, it is found that asphalt concrete mixes with SBS polymer modified asphalt binder showed significantly higher values of dynamic modulus and reduced rate of deformation at higher temperatures when compared to asphalt concrete mixes with crumb rubber and unmodified asphalt binders. From the concept of energy dissipation, it is found that SBS polymer modification substantially reduces the energy loss at higher temperatures. Multi-factorial analysis of variance carried out using generalized liner model showed that temperature, frequency and asphalt binder type significant influences the mechanical response of asphalt concrete mixes. The mechanical response of SBS polymer modified asphalt binders are significantly correlated with the rutting resistance of asphalt concrete mixes.  相似文献   

20.
In routine testing of hot mix asphalt (HMA) cyclic compression tests (CCT) are carried out to assess the permanent deformation behavior. However, CCTs can also be employed for determining the material response within the linear viscoelastic domain in terms of stiffness and phase lag, when a frequency and temperature sweep is considered. In the compressive domain two test setups are possible regarding the connection between load plate and specimen: The specimen is either firmly connected (glued) to the load plates, which prevents transverse strain at the end planes, or the specimen is placed between the load plates without firm connection. In this case friction-reducing additives (e.g. silicone grease) applied to the end planes of the specimen help to create a more homogeneous strain distribution over the height of the specimens, since limited transverse strain are also be activated at the end planes of the specimen. This paper investigates whether these two test setups produce comparable results in terms of viscoelastic material reaction of HMA. Therefore, CCTs were run on HMA-specimens with the two test setups. Data evaluation was carried out by means of regression analysis with a standard sine and an advanced function containing the first harmonic oscillation term. It is shown that the parameters of the first harmonic term are able to describe the magnitude and shape of a distorted sine. Data from force and axial deformation signals are analyzed as well as the derived viscoelastic material reaction. From the findings of the study it can be concluded that cyclic material tests in the compressive domain are capable of describing the viscoelastic material behavior of HMA regardless of the connection between specimen and load plates and that they are comparable to results of a well-established, standardized stiffness test, the 4-point-bending test. It is also shown that the regression analysis with the advanced function can be employed to analysis the quality of response of the test machine. Thus, technical limits of test machines and deformation sensors can be detected by using the regression analysis with the advanced approximation function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号