首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Appropriate characterisation of individual layer properties is crucial for mechanistic analysis of flexible pavements. Typically in inverse analyses, pavements are modelled as elastic or nonlinear elastic to obtain layer material properties through non-destructive falling weight deflectometer (FWD) testing. In this study, a layered viscoelastic–nonlinear forward model (called LAVAN) was used to develop a genetic algorithm-based backcalculation scheme (called BACKLAVAN). The LAVAN can consider both the viscoelastic behaviour of asphalt concrete (AC) layer and nonlinear elastic behaviour of unbound layers. The BACKLAVAN algorithm uses FWD load-response history at different test temperatures to backcalculate both the (damaged) E(t) and |E*| master curve of AC layers and the linear and nonlinear elastic moduli of unbound layers of in-service pavements. The BACKLAVAN algorithm was validated using two FWD tests run on a long-term pavement performance section. Comparison between the backcalculated and measured results indicates that it should be possible to infer linear viscoelastic properties of AC layer as well as nonlinear elastic properties of unbound layers from FWD tests.  相似文献   

2.
Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.  相似文献   

3.
This study improves a shear-based rutting model for asphalt concrete (AC) layers and calibrates the model with field data. With dynamic modulus-based material parameters, the laboratory rutting prediction model was improved and determined by the wheel tracking test and full-scale accelerated pavement test. Through the field survey on several in-service pavements, the rutting model was calibrated to be applied to AC layers. In the improved rutting prediction model, the ratio of maximum shear stress to shear strength was introduced to combine asphalt material design and pavement structural design. The speed correction coefficient and the new temperature processing method improve the accuracy of the rutting model. The calibrated rutting prediction model proves to be reasonable and accurate in predicting the rutting depth of AC layers.  相似文献   

4.
The variability of resilient modulus (M R) of unbound materials and subgrade due to laboratory test conditions affect pavement performance and designs. The performance-based mechanistic-empirical pavement design guide (MEPDG) is gaining more popularity in recent years for pavement design use. However, limited research efforts have quantitatively studied M R effects based on ME models. This research targets to evaluate the influences of M R variability on pavement performance and designs based on the MEPDG performance models. With a normal-distribution of M R seed values, pavement responses were computed with a layer-elastic analysis model, pavement performance was then predicted using MEPDG models, and design variability was studied via Monte Carlo simulation. Results indicate that the relationship between layer design thickness and M R varies from almost linear to nonlinear, which is highly dependent on the pavement structure and material properties. For the evaluated specific pavement structure and range of M R values, the least susceptible is the HMA design thickness as a function of M R under fatigue with a design Coefficient of Variance (CV) of 7.51 %, while the most susceptible is the base design thickness as a function of M R also under fatigue with a CV of 54.32 %. The combined effect of both rut depth and fatigue life considering the variability of both base and subgrade results in a design CV of 22.58 % for asphalt layer and 26.08 % for base layer. When using a weaker base layer or a thinner HMA layer, the modeled thickness design CV has changed ?4.19 to 1.14 %.  相似文献   

5.
The mechanistic–empirical pavement design guide (MEPDG) uses mechanistic–empirical models by analysing the impacts of traffic, climate, materials and pavement structure to predict performances of pavement. The MEPDG software uses a three-level hierarchical input to predict performance in terms of terminal International Roughness Index, permanent deformation, total cracking (reflective and alligator), asphalt concrete (AC) thermal fracture, AC bottom-up fatigue cracking and AC top-down fatigue cracking. However, these inputs with different levels of accuracy may have significant impact on performance prediction. This study focuses on the sensitivity of the inputs of MEPDG distresses to identify the effect of the accuracy level of inputs based on experimental design. A local sensitivity analysis is carried out to identify the main effect of inputs considering them as independent variables. Interaction effects are also analysed based on random combination of the inputs. Sensitive input variables and their combinations are evaluated through a multiple regression analysis for respective distresses.  相似文献   

6.
复合式路面层间粘结剂的材料与施工至关重要,其质量的好坏直接关系到整个粘结层,乃至复合式路面结构的整体质量。本文结合隆百高速公路工程,从保证粘结层质量角度出发,对材料质量、施工技术、工艺等进行了探讨和分析,提出了一些措施和建议。  相似文献   

7.
Pavement overlays represent a common technique used for pavement rehabilitation and maintenance and to increase the structural support of the pavements. In the Department of Defense, the methodology for the design of flexible pavement overlays is contained in the Unified Facilities Criteria 03-260-02 criteria and involves the use of an empirically derived formulation. The overlay design of flexible pavements is based on the thicknesses of the existing asphalt, base and subbase layers and the required minimum thickness for the asphalt layer. However, this formulation does not take into account the quality or the structural condition of the existing surface layers. The current formulation considers the materials to have full structural strength and no deterioration. This study proposes an improved methodology for calculating the required flexible overlay thickness of a flexible pavement by taking into account the structural condition of the existing asphalt layer. An asphalt thickness correction factor is introduced to quantify the amount of the existing asphalt layer thickness that can still offer structural support, and therefore influence the overlay thickness. The asphalt correction factor is based on the existing load-related distresses affecting the asphalt surface. The implementation of this new approach showed that an asphalt layer in poor condition requires up to 60% more in thickness than an asphalt layer in good condition. The proposed methodology aims to standardise the design and evaluation of flexible pavements overlaid with asphalt layers and account for existing structural conditions. Moreover, allocation of maintenance funding can be optimised, thus limiting pavement overdesign.  相似文献   

8.
In many developing countries, where resources are at premium, thin asphalt layers or chip seals are widely used to provide a durable all weather pavement surfacing. In such pavements the role of granular layers is very important in the general performance of the structure. Pavement designs in these countries are empirical in nature and rely on simple input parameters like California Bearing Ratio (CBR) values. Although widely applicable the traditional CBR test does not provide the mechanical properties such as resilient and permanent deformation characteristics of granular road materials. This paper documents the characterization technique developed to determine the mechanical behavior of granular (sub-) base materials based on CBR test using repeated load cycles. The confining pressure developed in the complex CBR stress state is estimated using strain gauges. Finite Element analysis has been attempted to model the repeated load CBR (RL-CBR) and derive an equivalent resilient modulus. Furthermore, a large scale cyclic load triaxial test was carried out on coarse unbound granular materials (UGMs) to validate the result of the RL-CBR. The RL-CBR test reasonably estimates the resilient modulus of UGMs which can be used as an input in mechanistic pavement design analysis in the absence of triaxial testing facilities.  相似文献   

9.
Two traffic speed deflection devices (TSDDs) that measure surface deflections at posted traffic speeds (up to 80–96 kph) were evaluated through a recent Federal Highway Administration project that included field trials at the MnROAD facility. Four geophones were embedded near the pavement surface to measure surface deflections during field trials at each of three MnROAD cells. In addition, the MnROAD facility counted with numerous other sensors such as strain gauges to measure pavement responses and thermocouple trees to collect pavement temperature at various depths. For the implementation of TSDDs in any network-level pavement management system, it is important to utilise a proper analytical model that can accommodate moving load and viscoelastic properties of pavement layers in the simulation of TSDD measurements. The 3D-Move software was chosen for this purpose. The viscoelastic properties used for the asphalt concrete (AC) layer include dynamic modulus and damping coefficient as a function of frequency relevant to the temperature at the time of the MnROAD field trials. The field trials and available data represented realistic field case scenarios to validate once more 3D-Move specifically for TSDD measurements. The proposed dynamic analytical model provided a good match with a variety of independent pavement responses that included surface deflection bowls (measured using embedded geophone sensors) as well as horizontal strains at the bottom of the AC layers (measured using MnROAD sensors).  相似文献   

10.
The debonding distress in asphalt pavement structures is a critical problem that affects the performance of asphalt concrete pavements. It occurs at the layer interface due to the poor bond quality between adjacent asphalt concrete layers and/or when stresses at the layer interface exceed the strengths of the material at the interface. The debonding of the adjacent layers, especially the top surface layer of an asphalt pavement, is a contributing factor to the premature cracking of pavements. Hence, the debonding distress can lead to a reduction in the life of the pavement. This paper presents an analytical and experimental framework to evaluate the potential for debonding at the layer interface of asphalt concrete pavements. Computational analysis was performed to determine the critical stress and strain states in layered asphalt pavements under moving vehicle loads using the Layered ViscoElastic pavement analysis for Critical Distresses (LVECD) computer program developed at North Carolina State University. This computational analysis enables a greater understanding of the critical stress that is involved in debonding and the ways that such stress is affected by pavement design parameters and environmental conditions. In addition, a prediction model was developed that can determine the shear bond strength at the interface of asphalt concrete layers with different tack coat materials at various temperatures, loading rates and normal confining stresses. The systematic and mechanistic framework developed in this study employs the maximum shear ratio concept as a shear failure criterion and provides a tool to evaluate the effects of various loading, environmental and pavement factors on the debonding potential of asphalt pavements. The overall advantages of the mechanistic framework and approach using the LVECD analysis tool will help lead to better understanding of the debonding mechanism, proper selection of the tack coats, and economic benefit in highway pavement maintenance and rehabilitation costs.  相似文献   

11.
Pavement roughness is a key parameter for controlling pavement construction processes and for assessing ride quality during the life of a pavement system. This paper describes algorithms used in processing three-dimensional (3D) stationary terrestrial laser scanning (STLS) point clouds to obtain surface maps of point wise indices that characterise pavement roughness. The backbone of the analysis is a quarter-car model simulation over a spatial 3D mesh grid representing the pavement surface. With the rich data-set obtained by 3D scanning, the algorithms identify several dynamic responses and inferences (suspension, acceleration and jerk) at each point in the domain. Variability in the indices is compared for a ‘rough’ pavement and a ‘smooth’ pavement in the spatial domain for different speed simulations of the quarter-car model. Results show high spatial variability in the various roughness indices both longitudinally and transversely (i.e. different wheel path positions). It is proposed that pavement roughness characterisation using a spatial framework coupled with univariate statistics provides more details on the severity and location of pavement roughness features compared to the (1D) one-dimensional methods. This paper describes approaches that provide an algorithmic framework for others collecting similar STLS 3D spatial data to be used in advanced pavement roughness characterisation.  相似文献   

12.
根据路基变形的非线性及沥青路面具有明显粘弹性的特点,将沥青路面简化为非线性粘弹性地基上的粘弹性无限长梁,建立了移动载荷作用下非线性粘弹性梁系统动力响应数学模型。利用Adomian分解法和小波变换法得到求解稳态响应解析解的新方法。通过实际道路参数对沥青路面动力响应进行了数值仿真,研究了车速、车辆轴载、路面材料及温度对沥青路面动力响应的影响规律。结果表明该文提出的计算方法简便、快捷,是求解该类非线性动力响应问题的一种有效方法;非线性模型更能准确地反映重载及超载时沥青路面实际结构受力状态。  相似文献   

13.
归纳了沥青路面耐久性及其影响因素,分析了我国高速公路沥青路面早期破损的类型、原因,提出了解决的对策措施。特别强调了沥青路面早期破损并不是哪一个或两个部门的问题,提高路面质量,需要项目决策、设计、施工、监理、材料供应、养护管理、科研、行政等各环节各部门的协作配合。  相似文献   

14.
This paper presents a dynamic model of asphalt pavement by considering the characteristics of moving tyre load, visco-elastic performance of material and layered system of pavement. The pavement is defined as an infinite layered system with the tyre load moving at a constant speed, and asphalt concrete (AC) is characterised as a kind of visco-elastic material. Using the spectrum analysis method, a complex tyre load is decomposed into a series of harmonic loads. Based on the frequency characteristics of a linear system, a universal formulation pattern for differential visco-elastic constitutive relations is provided. And then, a model is set up to analyse the dynamic response of asphalt pavement under moving harmonic load, and then to extend to the arbitrary moving load according to the superposition principle of a linear system. The dynamic responses of seven typical semi-rigid base asphalt pavements are analysed using the model. Analysis results indicate that the tensional strain at the bottom of the AC layer and the vertical compression strain at the top of the roadbed are not suitable for key indices of the semi-rigid base asphalt pavement. The shearing strain at the bottom of the AC layer can be taken as a key index to evaluate the fatigue performance, and the vertical compression strain at the top of the pavement surface can be taken as a key index to evaluate pavement rutting, and the vertical shearing strain at the top of pavement surface can be taken as a key index to evaluate top–down crack.  相似文献   

15.
The presence of mesoscopic features and damage in quasi-brittle materials causes significant second-order and nonlinear effects on the acoustic wave propagation characteristics. In order to quantify the influence of such micro-inhomogeneities, a new and promising tool for nondestructive material testing has been developed and applied in the field of damage detection. The technique focuses on the acoustic nonlinear (i.e., amplitude-dependent) response of one of the material's resonance modes when driven at relatively small wave amplitudes. The method is termed single-mode nonlinear resonance acoustic spectroscopy (SIMONRAS). The behavior of damaged materials is manifested by amplitude dependent resonance frequency shifts, harmonic generation, and nonlinear attenuation. We illustrate the method by experiments on artificial slate tiles used in roofing construction. The sensitivity of this method to discern material damage is far greater than that of linear acoustic methods.  相似文献   

16.
Considering the traditional contact area which is a full circular contact area without any tread, in the current pavement design procedure, is an extreme overestimation of contact area and hence extreme underestimation of the real contact stress. Since the relationship between the contact stress and pavement damage is not linear but exponential, even a trivial difference between tire contact areas leads to significant difference in terms of induced pavement damage. This study was conducted to quantify the relative damage caused by realistic tire–pavement contact area with respect to the full contact area. Therefore, permanent deformation profiles of different contact areas at three tire load groups were obtained using an in-house Rotary Compactor and Wheel Tracker equipment and the relative damage analyses were done between tires with and without tread from various aspects. These aspects include operational life reduction ratio, rutting rate, linear and nonlinear relative damage concepts. It was concluded that on average real tires with tread cause 57% reduction in the operational life. In average, real tires with tread induce 1.23 times more mm per cycle. Based on linear relative damage analysis, in average, real tires with tread are 2.6 times more damaging. Furthermore, nonlinear relative damage analyses indicate that real tires with tread induce about three times more rutting compared to the worn-out control tread.  相似文献   

17.
Abstract

The presence of mesoscopic features and damage in quasi-brittle materials causes significant second-order and nonlinear effects on the acoustic wave propagation characteristics. In order to quantify the influence of such micro-inhomogeneities, a new and promising tool for nondestructive material testing has been developed and applied in the field of damage detection. The technique focuses on the acoustic nonlinear (i.e., amplitude-dependent) response of one of the material's resonance modes when driven at relatively small wave amplitudes. The method is termed single-mode nonlinear resonance acoustic spectroscopy (SIMONRAS). The behavior of damaged materials is manifested by amplitude dependent resonance frequency shifts, harmonic generation, and nonlinear attenuation. We illustrate the method by experiments on artificial slate tiles used in roofing construction. The sensitivity of this method to discern material damage is far greater than that of linear acoustic methods.  相似文献   

18.
The amount of solid plastic waste generated from material packages like plastic bottle and similar utilities within the kingdom of Saudi Arabia has skyrocketed. This is as a result of the increased level of industrial packaging due to rapid industrialisation and fast urbanisation in the country. The associated cost of managing these solid wastes has also multiplied as the task become difficult and enormous. The effect of polypropylene, high- and low-density polyethylene (PP, HDPE and LDPE)-recycled plastic wastes (RPW) on the viscoelastic performance of the local asphalt binder has been investigated. The recycled plastics were obtained by shredding and grounding the RPW to a desirable size for easier blending with the asphalt binder. All the RPWs result in an improved rutting performance. The RPW-modified asphalts upper PG limit increase by at least one level for each 2% increase in the RPW content, in most cases. An increase of 55, 19 and 9% in resilient modulus (MR) was observed for PP-, HDPE- and LDPE-produced asphalt concrete (AC), respectively. Correlation between the MR of the AC and non-recoverable creep compliance (Jnr) of the asphalt binder was established. The obtained viscoelastic properties of the RPW-modified binder was utilised to model a typical pavement section using AASHTO mechanistic empirical pavement design guide (ME-PDG) software. The predicted distresses of the modelled pavement shows significant rutting and fatigue performance improvement for pavement produced with the RPW. Elastomeric type of polymer is required to supplement these RPW to enable them meet the AASHTO TP 70 elastic recovery requirement.  相似文献   

19.
Recovered materials from the transportation sector or secondary or by-product materials from the industrial, municipal, or mining sector can be used as substitutes for natural materials in the construction of highway infrastructure. The environmental impact of traditional and newer secondary materials needs to be determined for the conditions of their expected use. The purpose of this paper is to introduce a probabilistic framework for evaluating the environmental acceptability of candidate secondary materials based on the risk of soil and groundwater contamination from leached metals and organics from the pavement. The proposed framework provides a structured guidance for selecting the appropriate model, incorporating uncertainty, variability, and expert opinion, and interpreting results for decision making. This new approach is illustrated by a probabilistic analysis of arsenic leaching from Portland cement concrete and asphalt concrete materials that were constructed using virgin and secondary products.  相似文献   

20.
Grid reinforcement is becoming a standard construction and rehabilitation technique to improve the performance of bituminous pavements. Currently, selection of the appropriate grid type and position is based on empirical criteria or derived from the results of laboratory tests which consider a single aspect of the mechanical behavior of the grid-reinforced systems. An improvement in the existing design and testing approaches could be obtained considering the actual response of grid-reinforced systems under vehicular loads. An instrumented pavement section was constructed to achieve this objective by installing a glass fiber polymer grid (FP) and a carbon fiber/glass fiber grid (CF) inside a double-layered asphalt surfacing along an in-service road. This pavement is part of a wider project which also involves a RILEM inter-laboratory test on the same reinforced systems. The pavement response to falling weight deflectometer (FWD) and real-scale truck loads was measured using pressure cells and asphalt strain gauges installed inside the pavement. A layered elastic theory (LET) model was adopted to perform both back-calculation of layer moduli and forward-calculation (simulation) of pavement stress and strain. The FWD and the real-scale tests yielded congruent results highlighting that the strain field inside the double-layered surfacing was considerably reduced by the installation of the CF/glass fiber grid whereas the glass FP grid was probably too stiff, potentially leading to interface debonding. The LET model proved to be a simple and effective tool for a first-approach analysis of the reinforcement pavement response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号