首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crack growth rate versus crack length curves of heavily overloaded parent material specimens and fatigue crack propagation curves of friction‐stir‐welded aluminium samples are presented. It is shown that in both cases the residual stresses have a strong effect on the crack propagation behaviour under constant and variable amplitude loading. As a simplified engineering approach, it is assumed in this paper, that in both cases residual stresses are the main and only factor influencing crack growth. Therefore fatigue crack propagation predictions are performed by adding the residual stresses to the applied loading and by neglecting the possible effects of overloading and friction stir welding on the parent material properties. For a quantitative assessment of the residual stress effects, the stress intensity factor due to residual stresses Kres is determined directly with the so‐called cut‐compliance method (incremental slitting). These measurements are particularly suited as input parameters for the software packages AFGROW and NASGRO 3.0, which are widely used for fatigue crack growth predictions under constant and variable amplitude loading. The prediction made in terms of crack propagation rates versus crack length and crack length versus cycles generally shows a good agreement with the measured values.  相似文献   

2.
Selective laser melting (SLM) was used to prepare notched high‐cycle fatigue test specimens made from nickel‐based superalloy Inconel 718. Samples were designed to have 1 of 3 different notch geometries, including V notches with Kt of 2.2 or 3.1, a U notch with Kt of 2.0, and were printed in either vertical or horizontal orientations. Samples were tested with as‐printed dimensions and surfaces after heat treatment, but a separate set of SLM samples were printed as plates and machined to final dimensions comporting to the V‐notch specimen with Kt = 3.1. High‐cycle fatigue testing showed that machined SLM specimens behaved similar to wrought Inconel 718 plate specimens, but testing with as‐produced surfaces led to a decrease in fatigue life. The explanation for this difference is based on approximations of linear elastic fracture mechanics solutions for short cracks emanating from notch roots, with intrinsic surface features of SLM materials serving as the cracks. Analysis of the actual notch geometries after SLM fabrication indicates that stress intensity in the presence of these features plays a prominent role in determining number of cycles before fatigue crack initiation and propagation occurs.  相似文献   

3.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the propagation rate expression and the path prediction. It is found that during the mode transformation process, the crack propagation rate is still controlled by the mode I stress intensity factor; and Paris equation also holds for the relationship between and ΔKI . Crack propagation path can be predicted only when both the crack mode transformation rate and propagation rate are available.  相似文献   

4.
Previous papers have shown ΔKRP to be a useful parameter describing fatigue crack propagation behavior, where ΔKRP is an effective stress intensity factor range corresponding to the excess RPG load (re-tensile plastic zone's generated load) in which the retensile plastic zone appears under the loading process. In this paper, the relationship between ΔKRP and the zone size ( ) (which is smaller between the tensile plastic zone at maximum load and the compressive plastic zone at minimum load) was investigated using a crack opening/closing simulation model so as to consider a physical meaning of ΔKRP. As a result, it becomes clear that ΔKRP dominates the zone size where fatigue damage mostly occurs. This result supports the following crack propagation equation
where C and m are material constants.Simulation and fatigue crack propagation tests were then carried out for compact tension (CT), center cracked tension (CCT) and four points bend (4PB) specimens under constant amplitude loading to obtain C and m values for HT-50 steel. Fatigue crack propagation tests were also carried out under constant amplitude loading using CCT specimens with residual stress distribution due to flame gas heating at the center line or edge lines. The T specimen introduced tensile residual stress at the tip of a notch, and the C specimen introduced compressive residual stress. It therefore becomes clear that tensile residual stress leads to a decrease in RPG load, while compressive residual stress leads to increase in RPG load, and that the simulation results are in good agreement with the experimental RPG load. It also becomes clear that simulated crack growth curve using the simulated and the above equation is in good agreement with the experimental curve. It is understood that tensile residual stress creates only a slight increase in crack propagation rate and compressive residual stress create a big decrease a crack propagation rate.  相似文献   

5.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

6.
The effect of notch types and stress concentration factors (Kt) on low cycle fatigue life and cracking of the DZ125 directionally solidified superalloy has been experimentally investigated. Single‐edge notched specimens with V and U type geometries were tested at 850 °C with stress ratio R = 0.1. High temperature in situ optical method was used to observe crack initiation and short crack propagation. Scanning electron microscope observation of fracture was used to analyse the failure mechanism. The results reveal that fatigue resistance decreases with Kt increasing from 1.76 to 4.35. The ratcheting is found to be affected by both Kt and the nominal stress from the displacement–force curve. In situ observations indicate that the cracking does not occur at the notch apex but at the location where the max principal stress or Hill's stress is the highest. According to the scanning electron microscope observations, the failure of the notched specimens strongly depends on the anisotropy microstructures.  相似文献   

7.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

8.
This paper focuses on studying the fatigue crack growth (FCG) characteristics and fracture behaviours of 30 wt% B4C/6061Al composites fabricated by using powder metallurgy and hot extrusion method. Compact tension (CT) specimens having incisions parallel to the extrusion direction (T‐D) and perpendicular to the extrusion direction (E‐D) were investigated through FCG tests. Results show that, at low/medium stress‐intensity factor range levels (ΔK ≤ 9), crack propagation rate in E‐D specimens is lower than that in T‐D specimens because the elongated B4C particles parallel to the extrusion direction in E‐D specimens can deflect the crack. The scanning electron microscope micrographs of the fractured surface illustrate that crack mainly propagates in the matrix alloy at the initial stage of its propagation and propagates more remarkably near the particle‐matrix interface with the increase of ΔK value. B4C particles are also found to be easy to fracture during the rapid crack propagation. Based on fracture analyses, considering the impacts of factors like crack deviation, plastic zone size at the crack tip, and crack driving force, a 2‐D crack propagation model was developed to study the fatigue crack propagation mechanism in the 30 wt% B4C/6061Al composite.  相似文献   

9.
Mechanisms for corrosion fatigue crack propagation   总被引:2,自引:0,他引:2  
ABSTRACT The corrosion fatigue crack growth (FCG) behaviour, the effect of applied potential on corrosion FCG rates, and the fracture surfaces were studied for high‐strength low‐alloy steels, titanium alloys, and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates, polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open‐circuit potential and to measure the crack growth rate under polarization. Due to the higher resolution of the crack extension measurement technique, the time rarely exceeded 300 s. This approach made possible the observation of a non‐single mode effect of cathodic polarization on corrosion FCG rates. Cathodic polarization accelerated crack growth when the maximum stress intensity (Kmax) exceeded a certain well‐defined critical value characteristic for a given material‐solution combination. When Kmax was lower than the critical value, the same cathodic polarization, with all other conditions (specimen, solution, pH, loading frequency, stress ratio, temperature, etc.) being equal, retarded or had no influence on crack growth. The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen‐induced cracking (HIC). Therefore, critical values of Kmax, as well as the stress intensity range (ΔK) were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC. HIC was the main mechanism of corrosion FCG at Kmax > KHICK > ΔKHIC). For most of the material‐solution combinations investigated, stress‐assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax < KHICK < ΔKHIC).  相似文献   

10.
This paper is aimed at evaluating the influence of bi‐modal and lamellar microstructures on the behaviour of small cracks emanating from notches in α+β titanium Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on double‐edge‐notched specimens. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material yield stress. Crack closure effects were measured by an extensometric technique and discussed. Variations in crack aspect ratio were determined and considered in the ΔK calculation. Corresponding results were discussed by considering the effect of the yielded region at the notch tip calculated by elastic–plastic finite element modelling of the fatigue tests. The importance of the bi‐modal and lamellar microstructures on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. The crack growth rate data obtained were compared with those measured using standard C(T) specimens (long crack).  相似文献   

11.
Fatigue tests on material containing small defects were performed under a wide range of mean stress for three grades of steels with different hardness. The ΔKth of small defects had a peculiar dependency on material hardness and mean stress, which was quite different from those of long cracks or plain specimens. The crack closure of short cracks was measured. It was shown that the formation of the crack closure was affected by the material hardness and mean stress. This behaviour of crack closure resulted in characteristic fatigue limit properties of materials containing small defects.  相似文献   

12.
The mean stress has a significant effect on crack propagation life and must be included in prediction models. However, there is no consensus in the fatigue community regarding the dominant mechanism explaining the mean stress effect. The concept of crack closure has been widely used and several empirical models can be found in literature. The stress ratio, R, is usually the main parameter of these models, but present numerical results showed a significant influence of Kmax. A new empirical model is therefore proposed here, dependent on Kmax and ΔK, with four empirical constants. The model also includes the effect of material's yield stress, and two additional parameters were defined to account for stress state and crack closure parameter. A comparison was made with Kujawski's and Glinka's parameters, for a wide range of loading conditions. ΔKeff lies between Kujawski's and Glinka's parameters, and some agreement is evident, although the concepts are quite different. The crack opening model was applied to literature results and was able to collapse da/dN–ΔK curves for different stress ratios to a single master curve.  相似文献   

13.
Fatigue behaviour of AISI 310 stainless steel has been investigated up to very high cycles. The fatigue crack initiation sites were found at the surface of the material. Persistent slip bands developed at the surface of the specimens led to the crack initiation. At lower stress levels, shallow persistent slip bands were found at the surface of the specimens, and the fatigue limit was obtained. Notched specimens showed lower fatigue lives. Notched specimens with higher stress concentration factor (Kt) showed higher fatigue strength reduction factor (Kf). It was found that shallow notches of depth ~100 µm may reduce the fatigue life substantially.  相似文献   

14.
In this paper, the small fatigue crack behavior of titanium alloy TC4 at different stress ratios was investigated. Single‐edge‐notch tension specimens were fatigued axially under a nominal maximum stress of 370 MPa at room temperature. Results indicate that fatigue cracks in TC4 initiate from the interface between α and β phases or within α phase. More than 90% of the total fatigue life is consumed in the small crack initiation and growth stages. The crack growth process of TC4 can be divided into three typical stages, ie, microstructurally small crack stage, physically small crack stage, and long crack stage. Although the stress ratio has a significant effect on the total fatigue life and crack initiation life at constant σmax, its effect on crack growth rate is indistinguishable at R = ?0.1, 0.1, and 0.3 when crack growth rate is plotted as a function of ?K.  相似文献   

15.
The opening stresses of a crack emanating from an edge notch in a 1045 quenched and tempered steel specimen were measured under two different Society of Automotive Engineers (SAE) standard service load histories having different average mean stress levels. The two spectra are the Grapple Skidder history (GSH), which has a positive average mean stress, and the Log Skidder history (LSH), which has a zero average mean stress. To capture the behaviour of the crack opening stress in the material, the crack opening stress levels were measured at 900X using an optical video microscope, at frequent intervals for each set of histories scaled to two different maximum stress ranges.A crack growth analysis based on a fracture mechanics approach was used to model the fatigue behaviour of the steel specimens for the given load spectra and stress ranges. Crack growth analysis was based on an effective strain‐based intensity factor, a crack growth rate curve obtained during closure‐free loading cycles and a local notch strain calculation based on Neuber's rule.The crack opening stress (Sop) was modelled and the model was implemented in a fatigue notch model, and the fatigue lives of the specimens under the two different spectra scaled to several maximum stress levels were estimated. The average measured crack opening stresses were between 6 and 12% of the average calculated crack opening stresses. In the interest of simplifying the use of Sop in design, the average Sop was correlated with the frequency of occurrence of the cycle reducing the Sop to the average crack opening stress level. The use of an Sop level corresponding to the cycle causing a reduction in Sop to a level reached once per 10 cycles gave a conservative estimate of average crack opening stress for all the histories.  相似文献   

16.
The micromechanisms of fatigue crack propagation in a forged, polycrystalline IN 718 nickel-based superalloy are evaluated. Fracture modes under cyclic loading were established by scanning electron microscopy analysis. The results of the fractographic analysis are presented on a fracture mechanism map that shows the dependence of fracture modes on the maximum stress intensity factor, Kmax, and the stress intensity factor range, ΔK. Plastic deformation associated with fatigue crack growth was studied using transmission electron microscopy. The effects of ΔK and Kmax on the mechanisms of fatigue crack growth in this alloy are discussed within the context of a two-parameter crack growth law. Possible extensions to the Paris law are also proposed for crack growth in the near-threshold and high ΔK regimes.  相似文献   

17.
The paper presents a precise analysis of the influence of non‐proportional loading of specimens on fatigue life during initiation and propagation of fatigue cracks. Simulation of the fatigue life of specimens was based on relations describing propagation rate of the fatigue cracks. The Paris and Forman relations were applied; they were integrated after previous introduction of relationships for the equivalent range of the stress intensity factor ΔKeq and including the phase shift angle ? between amplitudes of the bending moment and the torsional moment. Under bending with torsion, range of the equivalent stress intensity factor ΔKeq includes ranges of stress intensity factors for loading modes I and III, i.e. ΔKI and Δ KIII. The performed tests of 10HNAP constructional steel under cyclic bending with torsion allowed us to determine the influence of the phase shift angle ? on the fatigue life. It has been proved that increase of the phase shift angle from ?= 0° to ?= 60° and the ratio of amplitude of the bending moment Mag to amplitude of the torsional moment Mas equal to 1.33, 2 and 4 cause increase of the fatigue life of the tested specimens. The maximum increase of the fatigue life of specimens made of 10HNAP steel was 73% (Mag/Mas= 2, ?= 45°).  相似文献   

18.
Very often, different approaches are used for crack initiation and crack growth predictions. The current article introduces a recently developed approach that can be used for the predictions of both crack initiation and crack propagation. A basic assumption is that both crack nucleation and crack growth are governed by the same fatigue damage mechanisms and a single fatigue damage criterion can model both stages. A rule is that any material point fails to form a fresh crack if the total accumulated fatigue damage reaches a limit. For crack initiation predictions, the stresses and strains are obtained either directly from experiments or though a numerical analysis. For the prediction of crack growth, the approach consists of two steps. Elastic‐plastic stress analysis is conducted to obtain the detailed stress‐strain responses. A general fatigue criterion is used to predict fatigue crack growth. Compact specimens made of 1070 steel were experimentally tested under constant amplitude loading with different R‐ratios and the overloading influence. The capability of the approach to predict both crack initiation and the crack growth under these loading conditions was demonstrated by comparing the predictions with the experimental observations.  相似文献   

19.
This paper proposes a local stress concept to evaluate the fretting fatigue limit for contact edge cracks. A unique S–N curve based on the local stress could be obtained for a contact edge crack irrespective of mechanical factors such as contact pressure, relative slip, contact length, specimen size and loading type. The analytical background for the local stress concept was studied using FEM analysis. It was shown that the local stress uniquely determined the ΔK change due to crack growth as well as the stress distribution near the contact edge. The condition that determined the fretting fatigue limit was predicted by combining the ΔK change due to crack growth and the ΔKth for a short crack. The formation of a non‐propagating crack at the fatigue limit was predicted by the model and it was experimentally confirmed by a long‐life fretting fatigue test.  相似文献   

20.
I. M. Dmytrakh 《Strain》2011,47(Z2):427-435
Abstract: The work is a compressed review based on the summarised results and the original approach for study of corrosion crack growth, taking into account local electrochemical conditions in the crack tip, which was developed at the Karpenko Physico‐Mechanical Institute of NASU. The model scheme of the pre‐fracture zone in the corrosion crack tip, which can be defined by the local values of pH of solution, electrode potential of metal E and stress intensity factor KI is proposed. For its realisation, the special method and testing equipment for corrosion crack growth study and local electrochemical measurements in the crack were developed. The variation of the electrochemical conditions in corrosion cracks was studied, and it has been found that some stabilised levels of the pH and E values can be achieved in the tip of a non‐propagating and a propagating crack under static and cyclic loading during of exposure time. On this ground, the method for forecasting of the threshold stress intensity factor KISCC under stress corrosion cracking was proposed using these characteristic values of pH and E. This method was also adopted for the determination of the threshold stress intensity factor Kth under corrosion fatigue. The special method for determining corrosion fatigue crack growth rate diagrams based on consideration of extreme electrochemical conditions in the crack tip was developed. It has been proven that such diagrams reflect the extreme influence of the environmental factor on corrosion fracture of material, and they may be recommended as the base for the remaining lifetime calculation of the structural elements exploited under environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号