首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach based on the local stress response is proposed to locate the fatigue critical point for metallic blunt notched specimens under multiaxial fatigue loading. According to the stress analysis, both stress gradient and gradient of loading nonproportionality exist at notch root. The plane in the vicinity of the notch that passes through the fatigue critical point and experiences the maximum shear stress amplitude is defined as the critical plane for notch specimens (CPN). Furthermore, the Susmel's fatigue damage parameter is modified to assess fatigue life of notched components by combining CPN and the theory of critical distance (TCD). The multiaxial fatigue test of the thin‐walled round tube specimens made of Ni‐base alloy GH4169 is carried out to verify the above approaches. In addition, test data of two kinds of materials are collected. The results show that the maximum absolute error of the fatigue critical point is 9.6° and the majority of the predicted life falls within the three‐time scatter band.  相似文献   

2.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

3.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

4.
This paper proposes an engineering method suitable for predicting the fatigue limit of both plain and notched components subjected to uniaxial as well as to multiaxial fatigue loadings. Initially, some well‐known concepts formalized by considering the cracking behaviour of metallic material under uniaxial cyclic loads have been extended to multiaxial fatigue situations. This theoretical extension allowed us to form the hypothesis that fatigue limits can be estimated by considering the linear–elastic stress state calculated at the centre of the structural volume. This volume was assumed to be the zone where all the main physical processes take place in fatigue limit conditions. The size of the structural volume was demonstrated to be constant, that is, independent from the applied loading type, but different for different materials. Predictions have been made by Susmel and Lazzarin's multiaxial fatigue criterion, applied using the linear–elastic stress state determined at the centre of the structural volume. The accuracy of this method has been checked by using a number of data sets taken from the literature and generated by testing notch specimens both under uniaxial and multiaxial fatigue loadings. Our approach is demonstrated to be a powerful engineering tool for predicting the fatigue limit of notch components, independently of material, stress concentration feature and applied load type. In particular, it allowed us to perform predictions within an error interval of about ±25% in stress, even though some material mechanical properties were either estimated or taken from different sources.  相似文献   

5.
In this paper, based on the process of the fatigue crack initiation and the critical plane theory, a continuous stress parameter was proposed to quantify the driving force of the fatigue crack initiation for the fully reversed multiaxial fatigue loading. In this stress parameter, the shear stress amplitude and normal stress amplitude on the critical plane were combined with the variable coefficients which were affected by the normalized fatigue life and the loading non‐proportionality. Owing to these coefficients, for the multiaxial loadings with different non‐proportionalities, the driving force of the fatigue crack initiation during the whole life could be described. After that, a novel accumulative fatigue damage model was established for the multiaxial two‐stage step spectrum. In this model, the accumulative damage was calculated according to the variation of the proposed stress parameter on the critical plane. Considering the directionality of the multiaxial fatigue damage, for the spectrum in which the loading path was variable, the damage accumulation was carried out on the critical planes of the both loadings, and the larger one was chosen as the final accumulative fatigue damage. In order to verify the new model, up to 41 different multiaxial two‐stage step spectrum loading tests on 2024‐T4 aluminium alloy were collected. The new model, as well as other five commonly used models, was applied to calculate the accumulative fatigue damage. The final results showed that, compared with other commonly used models, the new model had the most accurate results with the smallest scatters.  相似文献   

6.
This work investigates the possibility of designing fretting and notch fatigue experiments that are nominally equivalent in terms of damage evaluated by a multiaxial fatigue model. The methodology adopted to carry out this search considered a cylinder‐on‐flat contact geometry and a V‐notched plate. The loading conditions and geometries of the experimental configurations were adjusted to obtain the same decay of the multiaxial fatigue index from the hot spot up to a critical distance. Aluminium alloy 7050‐T7451 was used in the experimental evaluation of the methodology. Considering the well‐known scatter of fatigue data and the limited number of specimens available, the obtained results suggest that the use of the notch analogy in fretting fatigue is appropriate.  相似文献   

7.
In this paper the problem of the multiaxial fatigue limit estimation of sharply notched components has been addressed using two different methods: a critical distance method and a method involving modified Wöhler curves. These two methods had been previously developed by the authors, but required modification for use in conjunction with finite element stress analysis of sharply notched specimens subjected to multiaxial loadings. Initially, it was demonstrated mathematically that these methods are equivalent in terms of multiaxial stresses near the notch tip. Subsequently, by employing some well‐known uniaxial notch fatigue concepts, some assumptions have been made in order to extend the use of these methods to in‐phase multiaxial notch fatigue situations. Experimental data were obtained from tests conducted on V‐notched specimens subjected to in‐phase mixed Mode I and Mode II loadings. Both methods were successful in giving fatigue limit predictions with an error usually less than 15%. This is interesting because the two methods make quite different assumptions about the nature of fatigue crack growth in the vicinity of the notch.  相似文献   

8.
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading.  相似文献   

9.
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study.  相似文献   

10.
To accurately perform the fatigue assessment of engineering components subjected to in‐service multiaxial fatigue loading, the adopted design criterion must properly be calibrated, the used information usually being the fatigue strength under both pure uniaxial and pure torsional fatigue loading. Because of the complex fatigue response of metallic materials to multiaxial loading paths, the only reliable way to generate the necessary pieces of calibration information is by running appropriate experiments. Unfortunately, because of a lack of both time and resources, very often, structural engineers are requested to perform the multiaxial fatigue assessment by guessing the necessary fatigue properties. In this complex scenario, initially, the available empirical rules suitable for estimating fatigue strength under both pure axial and pure torsional fatigue loading are reviewed in detail. Subsequently, several experimental results taken from the literature and generated by testing metallic materials under a variety of proportional and non‐proportional multiaxial loading paths are used to investigate the way such empirical rules affect the accuracy in estimating fatigue strength, the damage extent being evaluated according to the modified Wöhler curve method. Such a systematic validation exercise allowed us to prove that under proportional loading (with both zero and non‐zero mean stresses), an adequate margin of safety can be reached even when the necessary calibration information is directly estimated from the material ultimate tensile strength. On the contrary, in the presence of non‐proportional loading, the use of the empirical rules reviewed in the present paper can result, under particular circumstances, in a non‐conservative fatigue design.  相似文献   

11.
In the present paper, the fatigue lifetime of metallic structural components subjected to variable amplitude loading is evaluated by applying 2 different multiaxial high‐cycle fatigue criteria. Such criteria, proposed by some of the present authors, are based on the critical plane approach and aim at reducing a given multiaxial stress state to an equivalent uniaxial stress condition. In particular, the procedure employed by both criteria consists of the following 3 steps: (1) definition of the critical plane; (2) counting of loading cycles; and (3) estimation of fatigue damage. Finally, the previous criteria are validated by comparing the theoretical results with experimental data related to smooth metallic specimens subjected to uniaxial and multiaxial variable amplitude loading.  相似文献   

12.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

13.
In engineering practice, it is generally accepted that most of components are subjected to multiaxial stress‐strain state. To analyse this complicated loading state, different types of specimens of 2A12 (2124 in the United States) aluminium alloy were tested under multiaxial loading conditions and a new multiaxial fatigue analysis method for the state of three‐dimensional stress and strain is proposed. Elastic‐plastic finite element method (FEM) and a proposed vector computing method are used to describe the loading state at the critical point of specimen, by which the parameter ΓT is calculated at the new defined subcritical plane to consider the effect of additional cyclic hardening. Meanwhile, the principal equivalent strain is still calculated at the traditional critical plane. The new damage parameter is composed of different process parameters, by which the dynamic path of strain state, including loading environments and material properties, are fully considered in one loading cycle. According to experimental verifications with 2A12 aluminium alloy, the results show that the proposed method shows satisfactory, accurate, and reliable results for multiaxial fatigue life prediction in the state of three‐dimensional stress and strain.  相似文献   

14.
In this paper generalized criteria of multiaxial random fatigue based on stress, strain and strain energy density parameters in the critical plane have been discussed. The proposed criteria reduce multiaxial state of stress to the equivalent uniaxial tension–compression or alternating bending. Relations between the coefficients occurring in the considered criteria have been derived. Thus, it is possible to take into account fatigue properties of materials under simple loading states during determination of the multiaxial fatigue life. Presented models have successfully correlated fatigue lives of cast iron GGG40 and steel 18G2A specimens under constant amplitude in‐phase and out‐of‐phase loadings including different frequencies.  相似文献   

15.
In the present paper, a damage gradient model combing the damage concept with the theory of critical distance (TCD) is established to estimate the fatigue lives of notched metallic structures under multiaxial random vibrations. Firstly, a kind of notched metallic structure is designed, and the biaxial random vibration fatigue tests of the notched metallic structures are carried out under different correlation coefficients and phase differences between two vibration axes. Then, the fatigue lives of the notched metallic structures are evaluated utilizing the proposed model with the numerical simulations. Finally, the proposed model is validated by the experiment results of the biaxial random vibration fatigue tests. The comparison results demonstrate that the proposed model can provide fatigue life estimation with high accuracy.  相似文献   

16.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

17.
This paper deals with the formulation and experimental validation of a novel fatigue lifetime estimation technique suitable for assessing the extent of damage in notched metallic materials subjected to in‐service proportional/nonproportional constant/variable amplitude multiaxial load histories. The methodology being formulated makes use of the Modified Manson‐Coffin Curve Method, the Shear Strain–Maximum Variance Method, and the elasto‐plastic Theory of Critical Distances, with the latter theory being applied in the form of the Point Method. The accuracy and reliability of our novel fatigue lifetime estimation technique were checked against a large number of experimental results we generated by testing, under proportional/nonproportional constant/variable amplitude axial‐torsional loading, V‐notched cylindrical specimens made of unalloyed medium‐carbon steel En8 (080M40). Specific experimental trials were run to investigate also the effect of non‐zero mean stresses as well as of different frequencies between the axial and torsional stress/strain components. This systematic validation exercise allowed us to demonstrate that our novel multiaxial fatigue assessment methodology is remarkably accurate, with the estimates falling within an error factor of 2. By modelling the cyclic elasto‐plastic behaviour of metals explicitly, the design methodology being formulated and validated in the present paper offers a complete solution to the problem of estimating multiaxial fatigue lifetime of notched metallic materials, with this holding true independently of sharpness of the stress/strain raiser and complexity of the load history.  相似文献   

18.
The fatigue assessment of structural components under complex multiaxial stresses (cyclic or random stress histories) can be conveniently tackled by means of damage mechanics concepts. In the present paper, a model for notch fatigue damage evaluation in the case of an arbitrary multiaxial loading history is proposed by using an endurance function which quantifies the damage accumulation in the material up to the final failure. The material collapse can be assumed to occur when the damage is complete, that is, when the parameter D reaches the unity. In the case of notched structural components, such a damage parameter D must be evaluated by taking into account the stress value as well as the gradient effect at the notch root. The proposed model, which also employs the stress invariants and the deviatoric stress invariants to quantify the damage phenomenon, is calibrated through a Genetic Algorithm once experimental data on the fatigue behaviour of the material being examined are known for some uniaxial or complex stress histories. The model presents the advantages to be mechanically based and to not require any evaluation of a critical plane and any loading cycle counting algorithm to determine the fatigue life.  相似文献   

19.
Low‐cycle fatigue data of type 304 stainless steel obtained under axial‐torsional loading of variable amplitudes are analyzed using four multiaxial fatigue parameters: SWT, KBM, FS and LKN. Rainflow cycle counting and Morrow's plastic work interaction rule are used to calculate fatigue damage. The performance of a fatigue model is dependent on the fatigue parameter, the critical plane and the damage accumulation rule employed in the model. The conservatism and non‐conservatism of predicted lives are examined for some combinations of these variables. A new critical plane called the weight function‐critical plane is introduced for variable amplitude loading. This approach is found to improve the KBM‐based life predictions.  相似文献   

20.
A short crack model originally proposed for multiaxial constant amplitude loading is extended and applied to multiaxial variable amplitude loading. Load sequences have a significant influence on variable amplitude life; they are taken into account using algorithms originally proposed only for uniaxial loading. The estimated fatigue lives of unnotched tubular specimens and notched shafts under different in- and out-of-phase multiaxial constant and variable amplitude load histories are compared with the experimental results. The comparison reveals that the proposed short crack approach enables sufficiently accurate estimation. Moreover, the estimated critical planes, i.e., the planes of maximum crack growth rate or minimum life, are in good agreement with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号