首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation‐based research has taught us alongside more recent work with cultivation‐independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well‐being.  相似文献   

2.
In the framework of a nationwide survey on indoor air quality conducted from September 2009 to June 2011 in 310 nurseries, kindergartens, and elementary schools in all regions of France, cleaning practices and products were described through an extensive questionnaire completed on‐site by expert building inspectors. The questionnaire included the cleaning frequencies and periods, cleaning techniques, whether windows were open during cleaning, and the commercial names of the products used. Analysis of the questionnaire responses showed that cleaning was generally performed daily for furniture and floors. It was performed mostly in the evening with wet mopping and with one or more windows open. Five hundred eighty‐four different cleaning products were listed, among which 218 safety data sheets (SDSs) were available and analyzed. One hundred fifty‐two chemical substances were identified in the SDSs. The typical substances in cleaning products included alcohols, chlorides, terpenes, aldehydes, and ethers; more than half of them are irritants. Two endocrine disruptors, 2‐phenylphenol and Galaxolide, were identified in two cleaning products used every day to clean the floors, in seven kindergartens and in a nursery respectively. Eleven reactive substances containing C=C double bonds, mostly terpenes, were identified in a wide variety of cleaning products.  相似文献   

3.
A weekly monitoring campaign of volatile organic compounds (VOC), with single sampling of 24 h, was carried out in non-residential indoor environments such as libraries, pharmacies, offices, gymnasiums, etc., in order to evaluate the VOC concentrations to which people are exposed. Moreover, an outdoor sample was coupled to each indoor site to point out the influence of indoor sources. They were sampled with Radiello diffusive samplers for thermal desorption and analyzed by GC-MS. As already described in other papers, the VOC levels of most of the indoor sites were higher than that observed in the corresponding outdoor sites. For example, some sites showed a level of pollution that is ten times higher than their corresponding outdoor site. The monitored environments that had higher concentrations of the investigated VOC were the pharmacies, a newspaper stand, a copy center, and the coffee shops. Analysis of the weekly average concentrations of each pollutant and the use of literature allowed pointing out some site-specific characteristics that singled out possible sources of VOC. These results were verified analyzing the indoor-outdoor ratio (I/O) too. Newspaper stands were characterized by very high concentrations of toluene and pharmacies were characterized by high concentrations of aromatic compounds. PRACTICAL IMPLICATIONS: Indoor air pollution caused by volatile organic compounds (VOC) might affect human health at home as well as in public and commercial buildings. The main VOC sources in indoor environments are human activities, personal care products, smoking, house cleaning products, building products, and outside pollution. To preserve human health it is necessary to evaluate the average concentrations of VOC to which people are exposed and to identify the main sources of indoor pollution by means of suitable indoor monitoring campaigns in several environments. These investigations allow pointing out the characteristic critical situations of some indoor environments or some other types of environments.  相似文献   

4.
Indoor mold odor is associated with adverse health effects, but the microbial volatiles underlying mold odor are poorly described. Here, chloroanisoles were studied as potential key players, being formed by microbial metabolism of chlorophenols in wood preservatives. Using a three‐stage approach, we (i) investigated the occurrence of chloroanisoles in buildings with indoor air quality problems, (ii) estimated their frequency in Sweden, and (iii) evaluated the toxicological risk of observed chloroanisole concentrations. Analyses of 499 building materials revealed several chloroanisole congeners in various types of buildings from the 1950s to 1970s. Evaluation of Swedish records from this time period revealed three coinciding factors, namely an unprecedented nationwide building boom, national regulations promoting wood preservatives instead of moisture prevention, and use of chlorophenols in these preservatives. Chlorophenols were banned in 1978, yet analysis of 457 indoor air samples revealed several chloroanisole congeners, but at median air levels generally below 15 ng/m3. Our toxicological evaluation suggests that these concentrations are not detrimental to human health per se, but sufficiently high to cause malodor. Thereby, one may speculate that chloroanisoles in buildings contribute to adverse health effects by evoking odor which, enhanced by belief of the exposure being hazardous, induces stress‐related and inflammatory symptoms.  相似文献   

5.
Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first‐ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state‐of‐the‐art semivolatile thermal‐desorption aerosol gas chromatography (SV‐TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time‐series data are characterized by temperature‐dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.  相似文献   

6.
Air‐conditioning systems harbor microorganisms, potentially spreading them to indoor environments. While air and surfaces in air‐conditioning systems are periodically sampled as potential sources of indoor microbes, little is known about the dynamics of cooling coil‐associated communities and their effect on the downstream airflow. Here, we conducted a 4‐week time series sampling to characterize the succession of an air‐conditioning duct and cooling coil after cleaning. Using an universal primer pair targeting hypervariable regions of the 16S/18S ribosomal RNA, we observed a community succession for the condensed water, with the most abundant airborne taxon Agaricomycetes fungi dominating the initial phase and Sphingomonas bacteria becoming the most prevalent taxa toward the end of the experiment. Duplicate air samples collected upstream and downstream of the coil suggest that the system does not act as ecological filter or source/sink for specific microbial taxa during the duration of the experiment.  相似文献   

7.
Ozone has adverse effects on human health. Skin oil on the human surface acts as an ozone sink indoors, producing oxidation products that can cause skin and respiratory irritations. Concentrations of ozone and oxidation products near human surfaces, including the breathing zone, can be modulated by indoor ventilation modes and human surface conditions. The objective of this study is to examine concentrations and spatial heterogeneity of ozone and ozonolysis products under representative ranges of indoor ventilation, clothing, and breathing conditions. Using computational fluid dynamics (CFD) simulation in conjunction with a chemical kinetic model, details of ozone reactions with the human surface and subsequent chemical reactions are examined. The results show that primary ozonolysis products are concentrated near the soiled clothing, while the secondary products are relatively well distributed throughout the room. Increasing indoor air mixing enhances the ozone deposition to the human surface, thereby resulting in higher emission rates of oxidation products in the room. Soiled clothing consumes more ozone than clean clothing and accordingly produces ~ 65% more primary products and ~15% more secondary products. The results also reveal that unsaturated hydrocarbons from the human breath, such as isoprene, contribute to only ~0.5% of ozone removal compared to ozone deposition to the human surface.  相似文献   

8.
孙军世  叶翠平 《山西建筑》2009,35(9):348-349
对室内装修容易产生的污染物种类和污染物对人体的危害以及室内空气的净化技术进行了分析,鉴于室内环境污染的现状,提出了预防、减少和控制污染的方法,从而提高居住质量,保证人体健康。  相似文献   

9.
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model‐predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di‐2‐ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady‐state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate‐bound deposition to the overall uptake of semi‐volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol‐air partition coefficient (Koa) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate‐alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.  相似文献   

10.
Qian Z  He Q  Kong L  Xu F  Wei F  Chapman RS  Chen W  Edwards RD  Bascom R 《Indoor air》2007,17(2):135-142
Diverse indoor combustion sources contribute to the indoor air environment. To evaluate the effect of these sources on human respiratory health, we examined associations between respiratory conditions and household factors in the 2360 children's fathers (mean = 38.4 years old) and associations between lung function and household factors in 463 primary school children (mean = 8.3 years old) from Wuhan, China. Factor analysis developed new uncorrelated 'factor' variables. Unconditional logistic regression models or linear regression models, controlling for important covariates, estimated the respiratory health effects. Coal smoke derived from home heating ('heating coal smoke') was associated with high adult reporting of persistent cough, persistent phlegm, and wheeze. Cooking coal smoke was associated with physician-diagnosed adult asthma and decreased forced vital capacity (FVC), and forced expiratory volume at 1 s (FEV(1)) in children. The presence of any home cigarette smoker was associated with more reports of persistent cough, persistent phlegm, cough with phlegm, and bronchitis. Our study suggests that in Wuhan, there may be independent respiratory health effects of different indoor combustion sources and their exposure factors for these study populations. PRACTICAL IMPLICATIONS: We conclude that multiple indoor air pollution sources could have adverse respiratory health effects on both children and middle-aged men in the city of Wuhan, China. These results may have implications for the Wuhan local government, the Chinese government, or other related organizations in efforts on protecting public health through regulation of indoor air pollution from indoor combustion sources.  相似文献   

11.
Little information exists about exposures to volatile organic compounds (VOCs) in early childhood education (ECE) environments. We measured 38 VOCs in single‐day air samples collected in 2010‐2011 from 34 ECE facilities serving California children and evaluated potential health risks. We also examined unknown peaks in the GC/MS chromatographs for indoor samples and identified 119 of these compounds using mass spectral libraries. VOCs found in cleaning and personal care products had the highest indoor concentrations (d‐limonene and decamethylcyclopentasiloxane [D5] medians: 33.1 and 51.4 μg/m³, respectively). If reflective of long‐term averages, child exposures to benzene, chloroform, ethylbenzene, and naphthalene exceeded age‐adjusted “safe harbor levels” based on California's Proposition 65 guidelines (10?5 lifetime cancer risk) in 71%, 38%, 56%, and 97% of facilities, respectively. For VOCs without health benchmarks, we used information from toxicological databases and quantitative structure–activity relationship models to assess potential health concerns and identified 12 VOCs that warrant additional evaluation, including a number of terpenes and fragrance compounds. While VOC levels in ECE facilities resemble those in school and home environments, mitigation strategies are warranted to reduce exposures. More research is needed to identify sources and health risks of many VOCs and to support outreach to improve air quality in ECE facilities.  相似文献   

12.
Little is known about the health effects of school‐related indoor dampness and microbial exposures. In this study, we investigated dampness and dampness‐related agents in both homes and schools and their association with allergy and respiratory health effects in 330 Danish pupils. Classroom dampness was identified based on technical inspection and bedroom dampness on parents' self‐report. Classroom and bedroom dust was analyzed for seven microbial components. Skin prick testing determined atopic sensitization. Lung function was expressed as z‐scores for forced expiratory volume in one‐second (zFEV1), forced vital capacity (zFVC) and the ratio zFEV1/zFVC using GLI‐2012 prediction equations. The parents reported children's allergies, airway symptoms, and doctor‐diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β‐coef. ?0.71; 95% CI ?1.17 to ?0.23) and zFVC (β‐coef. ?0.52; 95% CI ?0.98 to ?0.06) and positively with wheezing (OR 8.09; 95% CI 1.49 to 43.97). No consistent findings were found between any individual microbial components or combination of microbial components and health outcomes. Among other indoor risk factors, environmental tobacco smoke (ETS) decreased zFEV1 (β‐coef. ?0.22; 95% CI ?0.42 to ?0.02) and zFEV1/zFVCratio (β‐coef. ?0.26; 95% CI ?0.44 to ?0.07) and increased upper airway symptoms (OR 1.66; 95% CI 1.03–2.66). In conclusion, dampness in classrooms may have adverse respiratory health effects in pupils, but microbial agents responsible for this effect remain unknown.  相似文献   

13.
We present a screening‐level exposure‐assessment method which integrates exposure from all plausible exposure pathways as a result of indoor residential use of cleaning products. The exposure pathways we considered are (i) exposure to a user during product use via inhalation and dermal, (ii) exposure to chemical residues left on clothing, (iii) exposure to all occupants from the portion released indoors during use via inhalation and dermal, and (iv) exposure to the general population due to down‐the‐drain disposal via inhalation and ingestion. We use consumer product volatilization models to account for the chemical fractions volatilized to air (fvolatilized) and disposed down the drain (fdown‐the‐drain) during product use. For each exposure pathway, we use a fate and exposure model to estimate intake rates (iR) in mg/kg/d. Overall, the contribution of the four exposure pathways to the total exposure varies by the type of cleaning activities and with chemical properties. By providing a more comprehensive exposure model and by capturing additional exposures from often‐overlooked exposure pathways, our method allows us to compare the relative contribution of various exposure routes and could improve high‐throughput exposure assessment for chemicals in cleaning products.  相似文献   

14.
In the European research project OFFICAIR, a procedure was developed to determine associations between characteristics of European offices and health and comfort of office workers, through a checklist and a self‐administered questionnaire including environmental, physiological, psychological, and social aspects. This procedure was applied in 167 office buildings in eight European countries (Portugal, Spain, Italy, Greece, France, Hungary, the Netherlands, and Finland) during the winter of 2011–2012. About 26 735 survey invitation e‐mails were sent, and 7441 office workers were included in the survey. Among respondents who rated an overall comfort less than 4 (23%), ‘noise (other than from building systems)’, air ‘too dry’, and temperature ‘too variable’ were the main complaints selected. An increase of perceived control over indoor climate was positively associated with the perceived indoor environment quality. Almost one‐third of office workers suffered from dry eyes and headache in the last 4 weeks. Physical building characteristics were associated with occupants’ overall satisfaction (acoustical solutions, mold growth, complaints procedure, cleaning activities) and health (number of occupants, lack of operable windows, presence of carpet and cleaning activities). OFFICAIR project provides a useful database to identify stressors related to indoor environmental quality and office worker's health.  相似文献   

15.
Exposure to moisture‐damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture‐damaged and non‐damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture‐damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture‐damaged buildings.  相似文献   

16.
The primary emissions of VOCs (e.g. solvents) from building products influence the perceived indoor air quality during the initial decay period. However, secondary emissions will continue thereafter (chemical or physical degradation, e.g. oxidation, hydrolysis, mechanical wear, maintenance), in addition to sorption processes. Emission testing for primary VOC emissions is necessary, but insufficient to characterise the impact of building products in their entire life span on the perceived air quality. Methods to distinguish between the two types of emissions are required. Also, the influence of climate parameters on the emission rates is necessary to know for proper testing. Future product development and selection strategies of new building products should consider the secondary emissions, in addition to the contribution from the use of auxiliary agents for cleaning, maintenance, and other potential impacts either physical or chemical in nature. Some of the requirements for emission testing are discussed in terms of secondary vs. primary emissions in order to develop 'healthier/better' building products for the indoor environment. In addition, some of the assumptions about the possible impact of VOCs on health and comfort in the indoor environment are presented. Odour thresholds for VOCs are one or more orders of magnitude lower than the corresponding airway irritation estimates, and it also appears that chemically non-reactive VOCs are not sufficiently strong irritants to cause airway irritation at concentrations normally encountered indoors. Finally, future requirements for analytical laboratory performances is proposed to accommodate the increasing need to establish which VOCs may be responsible for the perception of odour intensity from building products.  相似文献   

17.
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next‐generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non‐random and demonstrated species segregation (C‐score, < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (< 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics.  相似文献   

18.
公共场所空调通风系统微生物污染调查分析及综述   总被引:3,自引:1,他引:2  
通过文献调查和现场测试,系统地分析了国内公共场所集中空调通风系统微生物污染现状,阐述了微生物污染与颗粒污染之间的关系,研究了通过生物颗粒评价空调通风系统污染对室内微生物污染影响的意义及存在的问题,提出了采取清洗、除污手段实现污染源控制的观点.  相似文献   

19.
Abstract Staphylococcus aureus was used as an indicator to study the origin and spread of microbial aerosol in and around chicken houses. Air samples indoor, upwind (10 and 50 m), and downwind (10, 50, 100, 200, and 400 m) of four chicken houses were collected using Andersen‐6 stages sampler. The concentrations of S. aureus were determined for every sample site. Isolation of S. aureus from chicken feces was performed according to the standard method. The genetic relationship among the isolates was determined by profiles of PCR‐amplified repetitive extragenic palindromic (REP‐PCR) elements. The results showed that the concentrations of S. aureus indoor of four chicken houses were higher than those upwind and downwind sites (P < 0.05 or P < 0.01), but there were no significant concentration differences among downwind sites (P > 0.05). The fingerprints and the phylogenetic tree indicated that a part of the S. aureus (55.6%, 10/18) isolates from indoor air had the same REP‐PCR fingerprints as feces isolates. Consequently, most isolates (57.1%, 20/35) from downwind 10, 50, 100, 200, even 400 m had the same REP‐PCR fingerprints as those from indoor or feces. These data indicated that some isolates from downwind and indoor originated from the chicken feces. However, those isolates from upwind had low similarity (similarity index 0.6–0.87) to those from indoor or feces. Therefore, the isolates upwind were not from the chicken feces or indoor. These results suggest that microbes in chicken feces can be aerosolized and spread indoor and outdoor, especially to downwind of the chicken houses. It should have an important epidemiological and public health significance.

Practical Implications

Thus, the use of S. aureus as an indicator to study the origin and spread of airborne pathogens from chicken houses is potentially useful for enhancing public health and understanding the airborne epidemiology of this pathogen. Meanwhile it can provide evidence for studying the spreading model of airborne pathogens.
  相似文献   

20.
This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n‐butane, 2‐methylbutane, toluene, formaldehyde, acetaldehyde, d‐limonene, ethanol, 2‐propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum‐like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号