首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surface replication method was utilized to monitor the small fatigue crack initiation and growth process of single‐edge‐notch tension specimens fabricated by nickel base superalloy GH4169. Three different stress levels were selected. Results showed that small fatigue cracks of nickel base superalloy GH4169 initiated from grain boundaries or surface inclusions. The small fatigue crack initiation and growth stages took up about 80–90% of the total fatigue life. Multiple major cracks were observed in the notch root, and specimen with more major cracks seemed to have smaller fatigue life under the same test conditions. At the early growth stage, small crack behaviour might be strongly influenced by microstructures; thus, the crack growth rates had high fluctuations. However, the stress level effect on the small fatigue crack growth rates was not distinguishable for the three different stress levels. And no clear differences were found among the crack initiation lives by using replication technique.  相似文献   

2.
Small internal fatigue cracks initiated in Ti‐6Al‐4V in the very high cycle regime were detected by synchrotron radiation microcomputed tomography (SR‐μCT) at SPring‐8 in Japan. The initiation and growth behaviours of the cracks were nondestructively observed, and the da/dNΔK relationship was measured and compared with that obtained in a high vacuum environment. SR‐μCT revealed that more than 20 cracks were initiated in one specimen. The crack initiation life varied widely from 20% to 70% of the average fatigue life and had little influence on the growth behaviour that followed. The initiation site size of each internal crack detected in one specimen was comparable with the size of the fracture origins obtained in ordinary fatigue tests. These results suggest that the surrounding microstructures around the initiation site are likely a dominant factor on the internal fracture rather than the potential initiation site itself. The internal crack growth rates were lower than 10?10 m/cycle, and extremely slow rates ranging from 10?13 to 10?11 m/cycle were measured in a lower ΔK regime below 5 MPa√m. The internal crack growth rate closely matched that of surface cracks in a high vacuum, and the reason for the very long life of internal fatigue fractures was believed to result from the vacuum‐like environment inside the internal cracks.  相似文献   

3.
通过计算裂纹尖端应力强度因子及疲劳裂纹扩展速率da/d N,由C.Paris模型推导出安全寿命Nf,由Bathias公式计算"哑铃"状钛合金试样的裂纹扩展寿命。通过理论计算和有限元分析超声疲劳"哑铃"状试样,得出应力最大位置。利用有限元仿真和实验数据分析TC4钛合金疲劳寿命。在20 k Hz的超声疲劳试验中,试样的断口位置表明:TC4钛合金材料内部缺陷是试样萌生裂纹使断裂位置偏离最大应力处的主要原因。并得出疲劳裂纹萌生阶段寿命决定"哑铃"状试样的疲劳寿命。  相似文献   

4.
The microstructural features and the fatigue propensities of interior crack initiation region for very‐high‐cycle fatigue (VHCF) of a Ti–6Al–4V alloy were investigated in this paper. Fatigue tests under different stress ratios of R = ?1, ?0.5, ?0.1, 0.1 and 0.5 were conducted by ultrasonic axial cycling. The observations by SEM showed that the crack initiation of VHCF presents a fish‐eye (FiE) morphology containing a rough area (RA), and the FiE and RA are regarded as the characteristic regions for crack initiation of VHCF. Further examinations by TEM revealed that a layer of nanograins exists in the RA for the case of R = ?1, while nanograins do not appear in the FiE outside RA for the case of R = ?1, and in the RA for the case of R = 0.5, which is explained by the Numerous Cyclic Pressing model. In addition, the estimations of the fatigue propensities for interior crack initiation stage of VHCF indicated that the fatigue life consumed by RA takes a dominant part of the total fatigue life and the related crack propagation rate is rather slow.  相似文献   

5.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

6.
Very often, different approaches are used for crack initiation and crack growth predictions. The current article introduces a recently developed approach that can be used for the predictions of both crack initiation and crack propagation. A basic assumption is that both crack nucleation and crack growth are governed by the same fatigue damage mechanisms and a single fatigue damage criterion can model both stages. A rule is that any material point fails to form a fresh crack if the total accumulated fatigue damage reaches a limit. For crack initiation predictions, the stresses and strains are obtained either directly from experiments or though a numerical analysis. For the prediction of crack growth, the approach consists of two steps. Elastic‐plastic stress analysis is conducted to obtain the detailed stress‐strain responses. A general fatigue criterion is used to predict fatigue crack growth. Compact specimens made of 1070 steel were experimentally tested under constant amplitude loading with different R‐ratios and the overloading influence. The capability of the approach to predict both crack initiation and the crack growth under these loading conditions was demonstrated by comparing the predictions with the experimental observations.  相似文献   

7.
ABSTRACT Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks, near‐threshold growth behavior of large cracks at constant R‐ratio/decreasing ΔK and constant Kmax/decreasing ΔK, respectively, for 9310 steel. The results showed that a pronounced small‐crack effect was not observed even at R = ?1, small cracks initiated by a slip mechanism at strong slip sites. Worst‐case near‐threshold testing results for large cracks under several Kmax values showed that an effect of Kmax on the near‐threshold behavior does not exist in the present investigation. A worst‐case near‐threshold test for a large crack, i.e. constant Kmax/decreasing ΔK test, can give a conservative prediction of growth behavior of naturally initiated small cracks. Using the worst‐case near‐threshold data for a large crack and crack‐tip constraint factor equations defined in the paper, Newman's total fatigue‐life prediction method was improved. The fatigue lives predicted by the improved method were in reasonable agreement with the experiments. A three‐dimensional (3D) weight function method was used to calculate stress‐intensity factors for a surface crack at a notch of the present SENT specimen (with r/w = 1/8) by using a finite‐element reference solution. The results were verified by limited finite‐element solutions, and agreed well with those calculated by Newman's stress‐intensity factor equations when the stress concentration factor of the present specimen was used in the equations.  相似文献   

8.
In situ ultrasonic fatigue with a cyclic frequency of 20 kHz was employed in an environmental scanning electron microscope (ESEM) to characterize fatigue crack formation and growth in the near alpha titanium alloy Ti–6242S. The role of environment on small fatigue crack initiation and growth was investigated in vacuum and in variable pressures of saturated water vapor, as well as in laboratory air. Small crack growth behavior from cracks initiated at FIB-produced micro-notches indicated a significant environmental dependence, with fatigue crack growth rates increasing with increasing partial pressures of water vapor. Environment also influenced crack initiation lifetime in that cracks initiated earlier in laboratory air than in vacuum or saturated water vapor environments. Transgranular, crystallographic crack growth was observed in each environment, with the crack path in primary α grains producing facets parallel to basal planes when crack size was small. Small crack growth resistance had a marked sensitivity to microstructural features, such as α/α grain boundaries with high misorientation and α/α + β boundaries. These initial investigations demonstrate the usefulness of in situ ultrasonic fatigue instrumentation (UF-SEM) as a new tool for the characterization of environmental and microstructural influences on very high cycle fatigue (VHCF) behavior.  相似文献   

9.
A series of axial tensile fatigue tests (R = 0.1) was carried out to investigate the initiation and the growth behaviours of very small surface fatigue cracks under two different surface conditions (viz. smooth and pitted surfaces) of AISI 304 stainless steel at room temperature. This paper deals with both of the two approaches regarding the analysis of fatigue: the approach based on the concept of fracture mechanics and low cycle fatigue. In particular, both the initiation and growth of cracks and the coalescence of small cracks by fatigue in the specimen have been investigated by the methods of surface replicas and photomicrographs. Quantitative information such as the initiation period, growth and coalescence behaviours of small cracks, and crack growth properties were systematically obtained. The results show that the accurate determination of these parameters is critical for the application of fracture mechanics to fatigue life assessment.  相似文献   

10.
This paper is aimed at evaluating the influence of bi‐modal and lamellar microstructures on the behaviour of small cracks emanating from notches in α+β titanium Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on double‐edge‐notched specimens. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material yield stress. Crack closure effects were measured by an extensometric technique and discussed. Variations in crack aspect ratio were determined and considered in the ΔK calculation. Corresponding results were discussed by considering the effect of the yielded region at the notch tip calculated by elastic–plastic finite element modelling of the fatigue tests. The importance of the bi‐modal and lamellar microstructures on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. The crack growth rate data obtained were compared with those measured using standard C(T) specimens (long crack).  相似文献   

11.
Abstract— The nucleation and growth of small naturally initiated cracks have been investigated on Ti 6 Al 4V alloys, with bimodal or globular microstructures. Tests have been performed in air at a stress amplitude near 0.75 of the yield stress. The influence of microstructure on fatigue damage is described and the differences in fatigue life of some titanium alloys are explained. The effect of microstructure on fatigue resistance is mainly related to the early stages of damage including initiation and small crack growth. Coalescence processes favoured by a high density of initiated surface microcracks in fine α grain material, or rapid initiation of large cracks in coarse α colonies, explains low fatigue resistance or lifetime scattering in globular alloys. Small crack growth retardation due to α/β barriers associated with a low surface crack density, limiting coalescence processes, explains the highest resistance of bimodal structures.  相似文献   

12.
This paper focuses on studying the fatigue crack growth (FCG) characteristics and fracture behaviours of 30 wt% B4C/6061Al composites fabricated by using powder metallurgy and hot extrusion method. Compact tension (CT) specimens having incisions parallel to the extrusion direction (T‐D) and perpendicular to the extrusion direction (E‐D) were investigated through FCG tests. Results show that, at low/medium stress‐intensity factor range levels (ΔK ≤ 9), crack propagation rate in E‐D specimens is lower than that in T‐D specimens because the elongated B4C particles parallel to the extrusion direction in E‐D specimens can deflect the crack. The scanning electron microscope micrographs of the fractured surface illustrate that crack mainly propagates in the matrix alloy at the initial stage of its propagation and propagates more remarkably near the particle‐matrix interface with the increase of ΔK value. B4C particles are also found to be easy to fracture during the rapid crack propagation. Based on fracture analyses, considering the impacts of factors like crack deviation, plastic zone size at the crack tip, and crack driving force, a 2‐D crack propagation model was developed to study the fatigue crack propagation mechanism in the 30 wt% B4C/6061Al composite.  相似文献   

13.
The effects of trace Zr on the fatigue behavior of Cu–6Ni–2Mn–2Sn–2Al alloy were studied through the initiation and growth behavior of a major crack. When stress amplitude was less than σa = 350 MPa, the fatigue life of Zr-containing alloys was about 2 times larger than that of alloy without Zr. When σa = 400 MPa, the effects of Zr addition on fatigue life disappeared. Increased fatigue life due to Zr addition resulted from an increase in crack initiation life and microcrack growth life. Zr addition generated strengthened grain boundaries (GBs) that developed from the precipitation of SnZr compounds. Strengthened GBs contributed to the increase in crack initiation life. The effects of Zr addition on fatigue behavior were discussed with relation to the behavior of microcracks.  相似文献   

14.
Fretting fatigue behaviour of shot‐peened titanium alloy, Ti‐6Al‐4V was investigated at room and elevated temperatures. Constant amplitude fretting fatigue tests were conducted over a wide range of maximum stresses, σmax= 333 to 666 MPa with a stress ratio of R= 0.1 . Two infrared heaters, placed at the front and back of specimen, were used to heat and maintain temperature of the gage section of specimen at 260 °C. Residual stress measurements by X‐ray diffraction method before and after fretting test showed that residual compressive stress was relaxed during fretting fatigue. Elevated temperature induced more residual stress relaxation, which, in turn, decreased fretting fatigue life significantly at 260 °C. Finite element analysis (FEA) showed that the longitudinal tensile stress, σxx varied with the depth inside the specimen from contact surface during fretting fatigue and the largest σxx could exist away from the contact surface in a certain situation. A critical plane based fatigue crack initiation model, modified shear stress range parameter (MSSR), was computed from FEA results to characterize fretting fatigue crack initiation behaviour. It showed that stress relaxation during test affected fretting fatigue life and location of crack initiation significantly. MSSR parameter also predicted crack initiation location, which matched with experimental observations and the number of cycles for crack initiation, which showed the appropriate trend with the experimental observations at both temperatures.  相似文献   

15.
The fatigue behaviour of a titanium alloy Ti‐6Al‐4V with equiaxed microstructure (EM) under different values of tensile mean stress or stress ratio (R) was investigated from high‐cycle fatigue (HCF) to very‐high‐cycle fatigue (VHCF) regimes via ultrasonic axial cycling. The effect of mean stress or R on the fatigue strength of HCF and VHCF was addressed by Goodman, Gerber, and Authors' formula. Three types of crack initiation, namely, surface‐with‐RA (rough area), surface‐without‐RA, and interior‐with‐RA, were classified. The maximum value of stress intensity factor (SIF) at RA boundary for R < 0 keeps constant regardless of R in HCF and VHCF regimes. The SIF range at RA boundary for R > 0 also keeps constant regardless of R in VHCF regime, but this value decreases linearly with the increase of R for surface RA cases. The microstructure observation at RA regions gives a new result of nanograin formation only in the cases of negative stress ratios for the titanium alloy with EM, which is explained by the mechanism of numerous cyclic pressing.  相似文献   

16.
Ultrasonic fatigue tests were conducted at the stress ratios of −1, −0.5, −0.1, 0.1 and 0.5 for a Ti–6Al–4V alloy in high-cycle and very-high-cycle fatigue regimes. Experimental results showed that faceted crack initiation was the main failure mode for specimens at the stress ratios of −0.1, 0.1 and 0.5, and multi-site faceted crack initiation was observed at the stress ratios of 0.1 and 0.5. The measurements indicated that the number of facets increased with the increase of stress ratio. Based on the observations, the mechanism of faceted crack initiation was proposed, i.e., (i) cleavage of isolated primary α grains in cluster; (ii) gradual growth of originated cracks (facets), and the coalescence of adjacent facets; and (iii) coalesced facets forming a main crack in the cluster. Moreover, a model based on Poisson defect distribution is proposed to describe the effects of stress ratio on faceted crack initiation, which is in agreement with the experimental results.  相似文献   

17.
This paper proposes a local stress concept to evaluate the fretting fatigue limit for contact edge cracks. A unique S–N curve based on the local stress could be obtained for a contact edge crack irrespective of mechanical factors such as contact pressure, relative slip, contact length, specimen size and loading type. The analytical background for the local stress concept was studied using FEM analysis. It was shown that the local stress uniquely determined the ΔK change due to crack growth as well as the stress distribution near the contact edge. The condition that determined the fretting fatigue limit was predicted by combining the ΔK change due to crack growth and the ΔKth for a short crack. The formation of a non‐propagating crack at the fatigue limit was predicted by the model and it was experimentally confirmed by a long‐life fretting fatigue test.  相似文献   

18.
The fatigue behaviour of a 2009/SiC/15p‐T4 DRA composite has been examined in the very high cycle fatigue (VHCF) regime where 107Nf≤ 109 cycles. Ultrasonic fatigue was used to achieve the very high cycle counts. Careful processing yielded a composite with a very homogeneous particle distribution with minimal clustering. Fatigue crack initiation was observed almost exclusively at AlCuFe inclusions with no crack initiation observed at SiC particle clusters. Fatigue lives at a given stress level exhibited minimal scatter and subsurface crack initiation was observed in all cases. This behaviour is consistent with the presence of a low number density of critical inclusions that are responsible for crack initiation very early in fatigue life.  相似文献   

19.
As possible substitutes for high-strength Cu–Be alloys, Cu–6Ni–2Mn–2Sn–2Al alloys have been developed. To clarify the physical background of the effect of trace Zr on the fatigue strength of such alloys, the initiation and propagation behavior of a major crack that led to the fracture of the tested specimens was monitored. When the stress amplitude was less than σ a = 350 MPa, the fatigue life of the alloys with Zr was about 2–2.5 times larger than that of the alloy without Zr. When σ a > 350 MPa, the effect of Zr addition on the fatigue life dramatically decreases as the stress amplitude increases. The increased fatigue life due to Zr addition resulted from an enhancement of the crack initiation life and microcrack growth life. The enhanced crack initiation life was mainly attributed to the strengthening of grain boundaries due to the precipitation of SnZr compounds. A statistical analysis of the behavior of multiple cracks was made to quantitatively evaluate the scatter in fatigue behavior. The statistical analysis supported the conclusions obtained from the behavior of a major crack.  相似文献   

20.
This paper is focused on the VHCF behavior of aeronautical titanium alloy under tensile and torsion fatigue loadings. Tensile tests were carried out with two different stress ratios: R = −1 and R = 0.1. Both surface and subsurface crack initiations were observed. In the case of subsurface crack initiation several fatigue life controlling mechanisms of crack initiation were found under fully-reversed loading conditions: initiation from (1) strong defects; (2) ‘macro-zone’ borders; (3) quasi-smooth facets and (4) smooth facets. Tests with stress ratio R = 0.1, have shown that initiation from the borders of ‘macro-zones’ becomes the dominant crack initiation mechanism in presence of positive mean stress. Like for the tensile results, surface and subsurface crack initiations were observed under ultrasonic torsion in spite of the maximum shear stress location on the specimen surface. But the real reason for the subsurface crack initiation under torsion was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号