首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 978 毫秒
1.
Although short-duration elevated exposures (peak exposures) to pollutants may trigger adverse acute effects, epidemiological studies to understand their influence on different health effects are hampered by lack of methods for objectively identifying peaks. Secondhand smoke from cigarettes (SHS) in the residential environment can lead to peak exposures. The aim of this study was to explore whether peaks in continuous PM2.5 data can indicate SHS exposure. A total of 41 children (21 with and 20 without SHS exposure based on self-report) from 28 families in New York City (NY, USA) were recruited. Both personal and residential continuous PM2.5 monitoring were performed for five consecutive days using MicroPEM sensors (RTI International, USA). A threshold detection method based on cumulative distribution function was developed to identify peaks. When children were home, the mean accumulated peak area (APA) for peak exposures was 297 ± 325 hour*µg/m3 for children from smoking families and six times that of the APA from non-smoking families (~50 ± 54 hour*µg/m3). Average PM2.5 mass concentrations for SHS exposed and unexposed children were 24 ± 15 µg/m3 and 15 ± 9 µg/m3, respectively. The average SHS exposure duration represents ~5% of total exposure time, but ~13% of children's total PM2.5 exposure dose, equivalent to an additional 2.6 µg/m3 per day. This study demonstrated the feasibility of peak analysis for quantifying SHS exposure. The developed method can be adopted more widely to support epidemiology studies on impacts of short-term exposures.  相似文献   

2.
Approximately half of all children under two years of age in Bangladesh suffer from an acute lower respiratory infection (ALRI) each year. Exposure to indoor biomass smoke has been consistently associated with an increased risk of ALRI in young children. Our aim was to estimate the effect of indoor exposure to particulate matter (PM2.5) on the incidence of ALRI among children in a low‐income, urban community in Bangladesh. We followed 257 children through two years of age to determine their frequency of ALRI and measured the PM2.5 concentrations in their sleeping space. Poisson regression was used to estimate the association between ALRI and the number of hours per day that PM2.5 concentrations exceeded 100 μg/m3, adjusting for known confounders. Each hour that PM2.5 concentrations exceeded 100 μg/m3 was associated with a 7% increase in incidence of ALRI among children aged 0–11 months (adjusted incidence rate ratio (IRR) 1.07, 95% CI 1.01–1.14), but not in children 12–23 months old (adjusted IRR 1.00, 95% CI 0.92–1.09). Results from this study suggest that reducing indoor PM2.5 exposure could decrease the frequency of ALRI among infants, the children at highest risk of death from these infections.  相似文献   

3.
About 339 million people worldwide are suffering from asthma. We aimed to investigate whether exposure to formaldehyde (FA) is associated with asthma, which could provide clues for preventive and mitigation actions. This article provides a systematic review and meta-analysis of observational studies to assess the association between indoor FA exposure and the risk of asthma in children and adults. An electronic search of PubMed, Embase, and Web of Science was performed to collect all relevant studies published before January 1, 2020, and a total of 13 papers were included in this meta-analysis. A random-effect model was conducted to calculate the pooled odds ratio (OR) between FA exposure and asthma. We found that each 10 µg/m3 increase in FA exposure was significantly associated with a 10% increase in the risk of asthma in children (OR = 1.10, 95% confidence interval = 1.00-1.21). We sorted the FA concentrations reported in the selected articles and categorized exposure variables into low (FA ≤ 22.5 µg/m3) and high exposure (FA > 22.5 µg/m3) according to the median concentration of FA. In the high-exposure adult group, FA exposure may also be associated with an increased risk of asthma (OR = 1.81, 95% CI = 1.18-2.78).  相似文献   

4.
High‐efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost‐effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP‐HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air‐handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5‐week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM2.5 and ozone concentrations, coupled with time‐activity data, were used to calculate exposures. Removal of HEPA filters increased 24‐hour mean PM2.5 exposure by 38 (95% CI: 31, 45) μg/m3. Removal of ESPs decreased 24‐hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a ?16.1% (?21.5%, ?10.4%) change in plasma‐soluble P‐selectin and a ?3.0% (?5.1%, ?0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks.  相似文献   

5.
Radon‐222 gas arises from the radioactive decay of radium‐226 and has a half‐life of 3.8 days. This gas percolates up through soil into buildings, and if it is not evacuated, there can be much higher exposure levels indoors than outdoors, which is where human exposure occurs. Radon exposure is classified as a human carcinogen, and new Danish homes must be constructed to ensure indoor radon levels below 100 Bq/m3. Our purpose was to assess how well 200 newly constructed single detached homes perform according to building regulations pertaining to radon and identify the association between indoor radon in these homes and municipality, home age, floor area, floor level, basement, and outer wall and roof construction. Median (5–95 percentile) indoor radon levels were 36.8 (9.0–118) Bq/m3, but indoor radon exceeded 100 Bq/m3 in 14 of these new homes. The investigated variables explained nine percent of the variation in indoor radon levels, and although associations were positive, none of these were statistically significant. In this study, radon levels were generally low, but we found that 14 (7%) of the 200 new homes had indoor radon levels over 100 Bq/m3. More work is needed to determine the determinants of indoor radon.  相似文献   

6.
Exposure to polychlorinated biphenyls (PCBs) from indoor air can lead to a significant increase in lower chlorinated congeners in human blood. Lower chlorinated congeners with short biological half‐lives can exhibit an indirect genotoxic potential via their highly reactive metabolites. However, little is known about their occurrence in indoor air and, therefore, about the effects of possible exposure to these congeners. We analyzed all mono‐, di‐, and trichlorinated biphenyls in the indoor air of 35 contaminated offices, as well as in the blood of the 35 individuals worked in these offices for a minimum of 2 years. The median concentration of total PCB in the indoor air was 479 ng/m3. The most prevalent PCBs in the indoor air samples were the trichlorinated congeners PCB 31, PCB 18, and PCB 28, with median levels of 39, 31, and 26 ng/m3, respectively. PCB 8 was the most prevalent dichlorinated congener (median: 9.1 ng/m3). Monochlorinated biphenyls were not detected in relevant concentrations. In the blood samples, the most abundant congener was PCB 28; nearly 90% of all mono‐, di‐, and trichlorinated congeners were attributed to this congener (median: 12 ng/g blood lipid).  相似文献   

7.
Korea is experiencing an extraordinarily rapid demographic transition. We investigated the short-term association between air pollution and mortality and assessed the impact of improved air quality on mortality in a rapidly aging city, Seoul, Korea.The generalized additive model (GAM) was used to estimate the relative risks (RR) of mortality associated with changes in air pollution. The time trends, seasonal variations, day of the week effects, and weather effects were controlled in the models. To estimate the health benefits, we used the US Environmental Protection Agency's BenMAP.For people 0–64 years of age, elderly people (65+ years), and all age groups, an increase of 10 μg/m3 in PM10 was associated with increases in daily death counts of 0.27% (95% CI: 0.04–0.50), 0.45% (95% CI: 0.27–0.64), and 0.37% (95% CI: 0.23–0.52), respectively. For ages 0–64 years, elderly people, and all age groups, a 10 ppb increase in 1-hour maximum ozone concentration resulted in an increased risk of daily death counts of 0.28% (95% CI: − 0.19–0.74), 0.96% (95% CI: 0.46–1.47), and 0.81% (95% CI: 0.35–1.26), respectively.For elderly people, it was estimated that the health benefits of attaining the World Health Organization's (WHO) air quality guidelines (AQGs) for PM10 (24-hour average 50 μg/m3) would suggest an annual reduction of 964 (95% CI: 564–1366) premature deaths, and 329 (95% CI: 159–500) premature deaths could be prevented annually in 2015 from attaining the WHO's guidelines for ozone (8-hour average 100 μg/m3).The rapid increase of the elderly population has major consequences and implications for society and public health. This study showed that elderly people are at higher risk for the acute mortality effects of air pollution. Therefore, cleaner air will substantially contribute to improved public health in Seoul, given the growing concern about the adverse effects of air pollution for elderly people.  相似文献   

8.
High levels of PM2.5 exposure and associated health risks are of great concern in rural China. For this study, we used portable PM2.5 monitors for monitoring concentrations online, recorded personal time‐activity patterns, and analyzed the contribution from different microenvironments in rural areas of the Yangtze River Delta, China. The daily exposure levels of rural participants were 66 μg/m3 (SD 40) in winter and 65 μg/m3 (SD 16) in summer. Indoor exposure levels were usually higher than outdoor levels. The exposure levels during cooking in rural kitchens were 140 μg/m3 (SD 116) in winter and 121 μg/m3 (SD 70) in summer, the highest in all microenvironments. Winter and summer values were 252 μg/m3 (SD 103) and 204 μg/m3 (SD 105), respectively, for rural people using biomass for fuel, much higher than those for rural people using LPG and electricity. By combining PM2.5concentrations and time spent in different microenvironments, we found that 92% (winter) and 85% (summer) of personal exposure to PM2.5in rural areas was attributable to indoor microenvironments, of which kitchens accounted for 24% and 27%, respectively. Consequently, more effective policies and measures are needed to replace biomass fuel with LPG or electricity, which would benefit the health of the rural population in China.  相似文献   

9.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

10.
A simple method for the collection and analysis of the four brominated and chlorinated trihalomethanes (THMs) in air samples is described. Ambient air samples were collected in pre‐prepared glass vials, with THM analysis performed using solid‐phase microextraction gas chromatography‐mass spectrometry, where the need for chemical reagents is minimized. Analytical parameters, including oven temperature program, solvent volume, incubation time, vial agitation, extraction time and temperature, as well as desorption time and temperature, were evaluated to ensure optimal method performance. The developed method allows for point‐in‐time quantification (compared to an average concentration measured over extended periods of time), with detection limits between 0.7 to 2.6 µg/m3. Excellent linearity (r> 0.99), repeatability (3% to 11% RSD), and reproducibility (3% to 16% RSD) were demonstrated over a concentration range from 2 to 5000 µg/m3. The method was validated for the analysis of THMs in indoor swimming pool air and was used to investigate the occurrence of THMs in the air above 15 indoor swimming pools. This is the first study to report the occurrence of THMs in swimming pool air in Australia, and concentrations higher than those previously reported in other countries were measured.  相似文献   

11.
The biologically relevant characteristics of particulate matter (PM) in homes are important to assessing human health. The concentration of particulate reactive oxygen species (ROS) was assessed in eight homes and was found to be lower inside (mean ± s.e. = 1.59 ± 0.33 nmol/m3) than outside (2.35 ± 0.57 nmol/m3). Indoor particulate ROS concentrations were substantial and a major fraction of indoor particulate ROS existed on PM2.5 (58 ± 10%), which is important from a health perspective as PM2.5 can carry ROS deep into the lungs. No obvious relationships were evident between selected building characteristics and indoor particulate ROS concentrations, but this observation would need to be verified by larger, controlled studies. Controlled experiments conducted at a test house suggest that indoor ozone and terpene concentrations substantially influence indoor particulate ROS concentrations when outdoor ozone concentrations are low, but have a weaker influence on indoor particulate ROS concentrations when outdoor ozone concentrations are high. The combination of substantial indoor concentrations and the time spent indoors suggest that further work is warranted to assess the key parameters that drive indoor particulate ROS concentrations.  相似文献   

12.
Growing evidence links household air pollution exposure from biomass cookstoves with elevated blood pressure. We assessed cross‐sectional associations of 24‐hour mean concentrations of personal and kitchen fine particulate matter (PM2.5), black carbon (BC), and stove type with blood pressure, adjusting for confounders, among 147 women using traditional or cleaner‐burning Justa stoves in Honduras. We investigated effect modification by age and body mass index. Traditional stove users had mean (standard deviation) personal and kitchen 24‐hour PM2.5 concentrations of 126 μg/m3 (77) and 360 μg/m3 (374), while Justa stove users’ exposures were 66 μg/m3 (38) and 137 μg/m3 (194), respectively. BC concentrations were similarly lower among Justa stove users. Adjusted mean systolic blood pressure was 2.5 mm Hg higher (95% CI, 0.7‐4.3) per unit increase in natural log‐transformed kitchen PM2.5 concentration; results were stronger among women of 40 years or older (5.2 mm Hg increase, 95% CI, 2.3‐8.1). Adjusted odds of borderline high and high blood pressure (categorized) were also elevated (odds ratio = 1.5, 95% CI, 1.0‐2.3). Some results included null values and are suggestive. Results suggest that reduced household air pollution, even when concentrations exceed air quality guidelines, may help lower cardiovascular disease risk, particularly among older subgroups.  相似文献   

13.
The risk of tobacco smoking and second‐hand smoke (SHS) exposure combined are the leading contributors to disease burden in high‐income countries. Recent studies and policies are focusing on reducing exposure to SHS in multiunit housing (MUH), especially public housing. We examined seasonal patterns of SHS levels within indoor common areas located on Boston Housing Authority (BHA) properties. We measured weekly integrated and continuous fine particulate matter (PM2.5) and passive airborne nicotine in six buildings of varying building and occupant characteristics in summer 2012 and winter 2013. The average weekly indoor PM2.5 concentration across all six developments was 9.2 μg/m3, higher during winter monitoring period (10.3 μg/m3) compared with summer (8.0 μg/m3). Airborne nicotine concentrations ranged from no detection to about 5000 ng/m3 (mean 311 ng/m3). Nicotine levels were significantly higher in the winter compared with summer (620 vs. 85 ng/m3; 95% CI: 72–998). Smoking‐related exposures within Boston public housing vary by season, building types, and resident smoking policy. Our results represent exposure disparities that may contribute to health disparities in low‐income communities and highlight the potential importance of efforts to mitigate SHS exposures during winter when outdoor–indoor exchange rates are low and smokers may tend to stay indoors. Our findings support the use of smoke‐free policy as an effective tool to eliminate SHS exposure and protect non‐smokers, especially residents of MUH.  相似文献   

14.
W. Dong  L. Pan  H. Li  M. R. Miller  M. Loh  S. Wu  J. Xu  X. Yang  J. Shan  Y. Chen  F. Deng  X. Guo 《Indoor air》2018,28(3):373-382
Associations between size‐fractionated indoor particulate matter (PM) and black carbon (BC) and heart rate variability (HRV) and heart rate (HR) in elderly women remain unclear. Twenty‐nine healthy elderly women were measured for 24‐hour HRV/HR indices. Real‐time size‐fractionated indoor PM and BC were monitored on the same day and on the preceding day. Mixed‐effects models were applied to investigate the associations between pollutants and HRV/HR indices. Increases in size‐fractionated indoor PM were significantly associated with declines in power in the high‐frequency band (HF), power in the low‐frequency band (LF), and standard deviation of all NN intervals (SDNN). The largest decline in HF was 19% at 5‐minute moving average for an interquartile range (IQR) increase (24 μg/m3) in PM0.5. The results showed that smaller particles could lead to greater reductions in HRV indices. The reported associations were modified by body mass index (BMI): Declines in HF at 5‐minute average for an IQR increase in PM0.5 were 34.5% and 1.0% for overweight (BMI ≥25 kg/m2) and normal‐weight (BMI <25 kg/m2) participants, respectively. Moreover, negative associations between BC and HRV indices were found to be significant in overweight participants. Increases in size‐fractionated indoor PM and BC were associated with compromised cardiac autonomic function in healthy elderly women, especially overweight ones.  相似文献   

15.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

16.
Reactive building materials offer an opportunity to provide indoor air cleaning with minimal energy use. Laboratory and test house experiments provide evidence that indoor ozone concentrations can be diminished by activated carbon (AC) and unpainted gypsum wallboard (GWB) panels. These two materials are highly reactive with ozone and produce few byproducts. When measured in a 14.2 m3 stainless-steel chamber, the mean deposition velocities to the materials were 5.3 m h-1 for AC and 2.4 m h−1 for GWB for a variety of airflow and relative humidity conditions. The ozone decay rates for both the materials were also measured in an unoccupied 34.5 m3 bedroom under various mixing conditions. In this case, ozone removal increased relative to background by 27–100% with a 4.4 m2 panel of a reactive material placed on one wall of the bedroom. The ozone decay rate for the bedroom increased over background by approximately 2–3 h−1 for GWB and 2–7 h−1 for AC. Application of a mass balance model for a typical home demonstrates that effectiveness for ozone removal depends weakly on the air exchange rate and strongly on the panel material, panel area, and mixing conditions. An ozone removal effectiveness of over 80% is possible with sufficient panel area and positioning that provides elevated air speeds near the panels.  相似文献   

17.
Q. Zhang  P. L. Jenkins 《Indoor air》2017,27(2):386-397
Ground‐level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by‐product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12–424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1‐h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts.  相似文献   

18.
PM10‐bound polycyclic aromatic hydrocarbons (PAHs) levels were monitored at urban locations (outdoor/indoor) within the city of Madrid between May 2017 and April 2018. Fourteen PAH congeners were measured, potential emission sources were identified as were potential carcinogenic risks. The ΣPAHs averaged 0.577 and 0.186 ng/m3 in outdoor and indoor air, with a high linear correlation per individual mean PAH and month. The largest contributors to the ΣPAHs were the high‐molecular‐weight PAHs. Principal component analysis‐multiple linear regression results showed that emissions from diesel and vehicular processes explained 27% and 23% of the total variance of outdoor and indoor air, while combustion processes accounted for 30% and 25% in ambient and indoor air, respectively. During the cold season, biomass burning plus coal and wood combustion were additional sources of outdoor emissions. The heavy‐, medium‐ and light‐molecular‐weight PAH originating from outdoor sources accounted for 72%, 80%, and ~60% of the indoor levels of the three respective PAH groups. Average BaP concentration was 0.029 and 0.016 ng/m3 in outdoor and indoor air, respectively. Estimated BaPeq concentration averaged 0.072, 0.035, and 0.027 ng/m3 for outdoor, indoor, and indoor‐generated individual PAH concentrations, respectively. The estimated carcinogenic risk falls within the range of acceptable risk targeted by the US‐EPA.  相似文献   

19.
Xilei Dai  Junjie Liu  Yongle Li 《Indoor air》2021,31(4):1228-1237
Due to the severe outdoor PM2.5 pollution in China, many people have installed air-cleaning systems in homes. To make the systems run automatically and intelligently, we developed a recurrent neural network (RNN) that uses historical data to predict the future indoor PM2.5 concentration. The RNN architecture includes an autoencoder and a recurrent part. We used data measured in an apartment over the course of an entire year to train and test the RNN. The data include indoor/outdoor PM2.5 concentration, environmental parameters and time of day. By comparing three different input strategies, we found that a strategy employing historical PM2.5 and time of day as inputs performed best. With this strategy, the model can be applied to predict the relatively stable trend of indoor PM2.5 concentration in advance. When the input length is 2 h and the prediction horizon is 30 min, the median prediction error is 8.3 µg/m3 for the whole test set. For times with indoor PM2.5 concentrations between (20,50] µg/m3 and (50,100] µg/m3, the median prediction error is 8.3 and 9.2 µg/m3, respectively. The low prediction error between the ground-truth and predicted values shows that the RNN can predict indoor PM2.5 concentrations with satisfactory performance.  相似文献   

20.
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号