首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
The present study intends to characterize ratcheting response of several steel alloys subject to asymmetric loading cycles through coupling the Ahmadzadeh‐Varvani kinematic hardening rule with isotropic hardening rules of Lee and Zavrel, Chaboche, and Kang. The Ahmadzadeh‐Varvani kinematic hardening rule was developed to address ratcheting progress over asymmetric stress cycles with relatively a simple framework and less number of coefficients. Inclusion of isotropic hardening rules to the framework improved ratcheting response of materials mainly over the first stage of ratcheting. Lee and Zavrel model (ISO‐I) developed an exponential function to account for accumulated plastic strain as yield surface is expanded over stage I and early stage II of ratcheting. Isotropic models by Chaboche (ISO‐II) and Kang (ISO‐III) encountered yield surface evolution in the framework by introducing an internal variable that takes into account the prior maximum plastic strain range. The choice of isotropic hardening model coupled to the kinematic hardening model is highly influenced by material softening/hardening response.  相似文献   

2.
The purpose of this research is determining experimentally the characteristics of tension and cyclic plastic behaviours of as‐received and annealed coppers and studying distribution of stress/strain field near the crack tip. Samples made by pure copper were annealed at 420°C for 40 minutes in electric furnace. To determine the properties of the cyclic plastic behaviour, proper tests with symmetric strain‐controlled conditions were performed on standard samples. Chaboche nonlinear hardening model was used to determine the cyclic plastic behaviour of both materials. According to results, annealing process creates isotropic hardening in the copper and also changes its initial kinematic hardening behaviour. Effects of the annealing and hardening on the variations of the stresses and strains around the crack tip were investigated. Also, ratcheting and mean stress relaxations versus number of cycles, inside the plastic region, were studied.  相似文献   

3.
The present study predicts ratcheting response of SS304 tubular stainless steel samples using kinematic hardening rules of Ohno–Wang (O–W), Chen‐Jiao‐Kim (C–J–K) and a newly modified hardening rule under various stress‐controlled, and combined stress‐ and strain‐controlled histories. The O–W hardening rule was developed based on the critical state of dynamic recovery of backstress. The C–J–K hardening rule further developed the O–W rule to include the effect of non‐proportionality in ratcheting assessment of materials. The modified rule involved terms , and in the dynamic recovery of the Ahmadzadeh–Varvani (A–V) model to respectively track different directions under multiaxial loading, account for non‐proportionality and prevent plastic shakedown of ratcheting data over multiaxial stress cycles. The O–W model persistently overestimated ratcheting strain over the multiaxial loading paths. The C–J–K model further lowered this overprediction and improved the predicted ratcheting curves. The predicted ratcheting curves based on the modified model closely agreed with experimental data under various loading paths.  相似文献   

4.
5.
In this paper strain ratcheting in cold expanded flat plate of Al‐alloy 2024‐T3 in double shear lap joints was studied both experimentally and numerically. In the experimental part, two types of symmetric strain‐controlled and asymmetric stress‐controlled cyclic tests were performed. Also, the cold expanded double shear lap joints subjected to cyclic stress‐controlled tests. The required parameters for simulating the cyclic plastic behaviour of Al‐alloy 2024‐T3 were obtained on the basis of the experimental responses. In the numerical part, a combination of nonlinear isotropic and nonlinear kinematic hardening model (Chaboche) was implemented in the commercial finite element code of ABAQUS, using the subroutine UMAT written in FORTRAN. The results of simulations give an accurate prediction of ratcheting for all types of loading. The obtained results show that increasing the mean stress increases the strain ratcheting. It is clearly shown that the cold expansion process decreases the magnitude of strain ratcheting remarkably compared with “as drilled” specimens and the decrease is bigger for larger cold expansion sizes. Also, it is shown that the middle plane has the highest amount of ratcheting compared to the pin entrance plane and exit plane of the plate hole.  相似文献   

6.
J. J. Xu  P. Gilles  Y. G. Duan 《Strain》2012,48(5):406-414
Abstract: This study contributes to Phase 2 of the Task Group 1 round robin in the NeT European Network. To obtain better prediction results, in the thermal analysis, two significant changes are used. The welding efficiency, η, is fixed at 75%, and the weld bead fusion boundary profiles are based upon macrographs taken from welded specimens, which have been destructively examined. In the subsequent mechanical simulation, a non‐linear kinematic or mixed isotropic–kinematic hardening model should be employed, and a progressive annealing scheme or explicit consideration of visco‐plastic or creep effects should be implemented to handle high‐temperature inelastic strains and reduce stress discontinuities. In this study, an uncoupled 3D thermal and mechanical analysis was carried out using the software code SYSWELD. In the thermal simulation, a two‐offset‐double‐ellipsoid heat source model was developed, and the parameters were fitted using the heat source fitting tool. Power intensity was applied to simulate 1‐s dwelling time at the weld start end. Offset distances between two double ellipsoids were adjusted to obtain the weld bead transverse fusion boundary profiles at different positions. Predicted temperatures were compared with the measured data by thermocouples on the test pieces. In the mechanical analysis, a new material constitutive model, non‐linear mixed hardening model, was developed. Tension–compression cyclic tests were simulated at different temperatures using three different material hardening models (isotropic hardening model, kinematic hardening model and non‐linear mixed isotropic–kinematic hardening model), and the predicted cyclic stress–strain curves were compared with the measured data. Effects of three different hardening models on the welding residual stresses were studied. Compared with the measured data, the optimum material hardening model was confirmed.  相似文献   

7.
The present study evaluates ratcheting response of materials by means of the Armstrong–Frederick (A–F) hardening rule, the modified A–F rule (Bower's model), and further modifications of the hardening rule based on new introduced coefficients. The implemented modifications on the A–F‐based hardening rule aims to address stages of ratcheting over stress cycles. The modified hardening rule predicts the ratcheting strain rate decay over stage I and the constant rate of strain accumulation during stage II. The modified hardening rule consisted of the coefficients of the hardening rule controlling stress–strain hysteresis loops generated over stress cycles during ratcheting process (Bower's modification on A–F rule) plus the coefficients controlling rates over stages of materials ratcheting deformation. Stress–strain‐dependent coefficients in the modified rule are responsible to compromise overprediction of ratcheting of A–F during stage I and the premature plastic shakedown beyond stage I induced by Bower's model. Ratcheting strain rate coefficients improved the hardening rule capability to calibrate and control the rate of ratcheting in stages I and II and enabled the modified hardening rule to predict ratcheting strain over a prolonged domain of stress cycles. The modified hardening rule was employed to assess ratcheting response of 304, 42CrMo, 316L steel and copper samples under uniaxial loading conditions. The predicted ratcheting values based on the modified hardening rule and the experimental ratcheting strains were found in good agreements.  相似文献   

8.
Cyclic plastic deformation characteristics of 304LN stainless steel material have been studied with two proposed cyclic plasticity models. Model MM-I has been proposed to improve the simulation of ratcheting phenomenon and model MM-II has the capability to simulate both cyclic hardening and softening characteristics of the material at various strain ranges. In the present paper, strain controlled simulations are performed with constant, increasing and decreasing strain amplitudes to verify the influences of loading schemes on cyclic plasticity behaviors through simulations and experiments. It is observed that the material 304LN exhibits non Masing characteristics under cyclic plastic deformation. The measured deviation from Masing is well established from the simulation as well as from experiment. Simulation result shows that the assumption of only isotropic hardening is unable to explain the hardening or softening characteristics of the material in low cycle fatigue test. The introduction of memory stress based cyclic hardening coefficient and an exponentially varying ratcheting parameter in the recall term of kinematic hardening rule, have resulted in exceptional improvement in the ratcheting simulation with the proposed model, MM-II. Plastic energy, shape and size of the hysteresis loops are additionally used to verify the nature of cyclic plasticity deformations. Ratcheting test and simulation have been performed to estimate the accumulated plastic strain with different mean and amplitude stresses. In the proposed model MM-I, a new proposition is incorporated for yield stress variation based on the memory stress of loading history along with the evolution of ratcheting parameter with an exponential function of plastic strain. These formulations lead to better realization of ratcheting rate in the transient cycles for all loading schemes. Effect of mean stress on the plastic energy is examined by the simulation model, MM-I. Finally, the micro structural investigation from transmission electronic microscopy is used to correlate the macroscopic and microscopic non Masing behavior of the material.  相似文献   

9.
In this paper, an anisotropic material model based on a non‐associated flow rule and nonlinear mixed isotropic‐kinematic hardening is developed. The quadratic Hill48 yield criterion is considered in the non‐associated model for both yield function and plastic potential to account for anisotropic behavior. The developed model is integrated based on fully implicit backward Euler's method. The resulting problem is reduced to only two simple scalar equations. The consistent local tangent modulus is obtained by exact linearization of the algorithm. All numerical development was implemented into user‐defined material subroutine for the commercial finite element code ABAQUS/Standard. The performance of the present algorithm is demonstrated by numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A Gurson‐based constitutive model is presented, which includes non‐linear mixed isotropic–kinematic hardening and creep, and allows the analysis of problems involving arbitrarily large plastic strains. This model was developed with the main objective of allowing, on the basis of a single set of material parameters, the numerical simulation of all the main features of cold metal forming processes, which usually imply severe loading–unloading cycles with very large plastic strains, difficult to be correctly reproduced numerically. A suitable integration scheme of the rate equations is described and implemented into a finite element code. The results obtained are compared with some reference experimental ones; an application of the model for the simulation of wire drawing processes is also presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A continuum‐based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic response of non‐linear structural systems with elastic–plastic material and large deformation. The methodology is aimed for applications in non‐linear dynamic problems, such as crashworthiness design. The first‐order variations of the energy forms, load form, and kinematic and structural responses with respect to sizing design variables are derived. To obtain design sensitivities, the direct differentiation method and updated Lagrangian formulation are used since they are more appropriate for the path‐dependent problems than the adjoint variable method and the total Lagrangian formulation, respectively. The central difference method and the finite element method are used to discretize the temporal and spatial domains, respectively. The Hughes–Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and Jaumann rate‐based incrementally objective stress integration scheme are used to handle the finite strain and rotation. An elastic–plastic material model with combined isotropic/kinematic hardening rule is employed. A key development is to use the radial return algorithm along with the secant iteration method to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the finite difference results. Design optimization is carried out using the design sensitivity information. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The time independent non-unified version of the Chaboche constitutive model for the cyclic loading which includes the kinematic and isotropic hardening is discussed in detail. The performance of the Chaboche constitutive model in predicting ratcheting response of CS1026 steel for a broad set of mechanical uniaxial and biaxial loading histories is considered. A numerical iterative method is used to calculate the stresses and strains in beams due to cyclic loading. The reported experimental data of the stainless steel, available in the literature, is used for the verification of the results. It is concluded that the Chaboche model performs quite well in predicting the uniaxial ratcheting or shakedown responses. In addition, imposing the isotropic hardening effect to the constitutive equations results to lower ratcheting rate at initial cycles. While the kinematic hardening effect remains the major factor in prediction of the ratcheting response.  相似文献   

13.
14.
Cyclic stress‐strain response of 316LN stainless steel subjected to low cycle fatigue at strain amplitude of ±0.4% and at 873 K is simulated using finite element analysis with non‐linear isotropic‐kinematic hardening Chaboche model. Four different approaches have been used in simulating cyclic stress response and hysteresis loops: 3 based on Chaboche model‐parameters and the fourth on direct experimental data (stabilized loop and cyclic stress‐strain curve [CSSC]). Among them, simulations performed with direct experimental data have not yielded expected initial cyclic response. The source of data used for evaluation of kinematic‐hardening (KH) parameters determined the extent of closeness between experimental results and Chaboche‐model predictions. KH parameters determined from first‐cycle loop and modified‐CSSC predicted the overall stress‐strain response (from initial to stabilized condition) with reasonable fit, compared with other approaches. All 4 approaches though predicted stabilized response, simulations based on “KH‐parameters from stabilized‐cycle” accurately described stabilized response with coefficient of determination (r2) 0.995.  相似文献   

15.
This paper presents alternative forms of hyperelastic–plastic constitutive equations and their integration algorithms for isotropic‐hardening materials at large strain, which are established in two‐point tensor field, namely between the first Piola–Kirchhoff stress tensor and deformation gradient. The eigenvalue problems for symmetric and non‐symmetric tensors are applied to kinematics of multiplicative plasticity, which imply the transformation relationships of eigenvectors in current, intermediate and initial configurations. Based on the principle of plastic maximum dissipation, the two‐point hyperelastic stress–strain relationships and the evolution equations are achieved, in which it is considered that the plastic spin vanishes for isotropic plasticity. On the computational side, the exponential algorithm is used to integrate the plastic evolution equation. The return‐mapping procedure in principal axes, with respect to logarithmic elastic strain, possesses the same structure as infinitesimal deformation theory. Then, the theory of derivatives of non‐symmetric tensor functions is applied to derive the two‐point closed‐form consistent tangent modulus, which is useful for Newton's iterative solution of boundary value problem. Finally, the numerical simulation illustrates the application of the proposed formulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
An integration procedure designed to satisfy plane stress conditions for any constitutive law initially described in 3D and based on classical plasticity theory is presented herein. This method relies on multi‐surface plasticity, which allows associating in series various mechanisms. Three mechanisms have ultimately been used and added to the first one to satisfy the plane stress conditions. They are chosen to generate a plastic flow in the 3 out‐of‐plane directions, whose stresses must be canceled (σ33,σ13, and σ23). The advantage of this method lies in its ease of use for every plastic constitutive law (in the general case of the non‐associated flow rule and with both nonlinear kinematic and isotropic hardening). Method implementation using a cutting plane algorithm is presented in its general framework and then illustrated by the example of a J2‐plasticity material model considering linear kinematic and isotropic hardening. The approach is compared with the same J2‐plasticity model that has been directly derived from a projection of its equations onto the plane stress subspace. The performance of the multi‐surface plasticity method is shown through the comparison of iso‐error and iso‐step contours in both formulations, and lastly with a case study considering a hollow plate subjected to tension. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The study presented in this paper analyses the mechanical effects of material constitutive modelling on the numerical prediction of plasticity induced crack closure. With this aim, an elastoplastic stress analysis of a MT specimen was conducted using an implicit three dimensional finite element program. Two materials were studied: an Aluminium Alloy and a High Strength Steel. Several constitutive models were used to describe their cyclic behaviour, ranging from pure isotropic hardening or pure kinematic hardening models to combined isotropic plus kinematic hardening models. Numerical results showed clear differences in plastic behaviour and crack closure predictions for the different types of mechanical models used to describe the mechanical behaviour of the materials. The mechanisms of opening stress stabilization, usually observed in numerical simulations, are explained in this work by analysing the evolution of plastic deformation along the crack flanks. The same type of plastic deformation stabilization behaviour was observed independently of the hardening model in use.  相似文献   

18.
This paper deals with implementation of cyclic plastic constitutive models in which a general form of strain hardening and dynamic recovery is employed to represent the multilinear, as well as non‐linear, evolution of back stress. First, in order to incorporate such a general form of kinematic hardening in finite element methods, successive substitution and its convergence are discussed for implicitly integrating stress; moreover, a new expression of consistent tangent modulus is derived by introducing a set of fourth‐rank constitutive parameters into discretized kinematic hardening. Then, the constitutive parameters introduced are specified in three cases of the general form of kinematic hardening; the three cases have distinct capabilities of simulating ratcheting and cyclic stress relaxation. Numerical examples are given to verify the convergence in successive substitution and the new expression of consistent tangent stiffness. Error maps for implicitly integrating stress under non‐proportional as well as proportional loading are also given to show that the multilinear case of the general form provides high accuracy even if strain increment is very large. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Cyclic plastic deformation phenomena include the Bauschinger effect, cyclic hardening/softening, strain range effect, loading history memory, ratcheting, mean stress dependent hardening, mean stress relaxation and non-proportional hardening. In this work, different cyclic plastic deformation responses of piping materials (SA333 C-Mn steel and 304LN stainless steel) are experimentally explored. Cyclic hardening/softening is depends upon loading types (i.e. stress/strain controlled), previous loading history and strain/stress range. Pre-straining followed by LCF and mean stress relaxation shows similar kind of material response. Substantial amount of non proportional hardening is observed in SA333 C-Mn steel during 90° out of phase tension-torsion loading. During ratcheting, large amount of permanent strain is accumulated with progression of cycles. Permanent strain accumulation in a particular direction causes cross-sectional area reduction and which results uncontrollable alteration of true stress in engineering stress controlled ratcheting test. In this work, true stress control ratcheting on piping materials has been carried out in laboratory environment. Effects of stress amplitude and mean stress on the ratcheting behaviors are analyzed. A comparison has also been drawn in between the true and engineering stress controlled tests, and massive difference in ratcheting life and strain accumulation is found.  相似文献   

20.
This paper concerns design sensitivity analysis (DSA) for an elasto–plastic material, with material parameters depending on, or serving as, design variables. The considered constitutive model is Huber–Mises deviatoric plasticity with non‐linear isotropic/kinematic hardening, one which is applicable to metals. The standard radial return algorithm for linear hardening is generalized to account for non‐linear hardening functions. Two generalizations are presented; in both the non‐linearity is treated iteratively, but the iteration loop contains either a scalar equation or a group of tensorial equations. It is proven that the second formulation, which is the one used in some parallel codes, can be equivalently brought to a scalar form, more suitable for design differentiation. The design derivatives of both the algorithms are given explicitly, enabling thus calculation of the ‘explicit’ design derivative of stresses entering the global sensitivity equation. The paper addresses several issues related to the implementation and testing of the DSA module; among them the concept of verification tests, both outside and inside a FE code, as well as the data handling implied by the algorithm. The numerical tests, which are used for verification of the DSA module, are described. They shed light on (a) the accuracy of the design derivatives, by comparison with finite difference computations and (b) the effect of the finite element formulation on the design derivatives for an isochoric plastic flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号