共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu-yan Yang Lin Fan Jiao Wang Yuan-duo Zhu Xu Li Xin-qi Wang Xu Yan Li Li Yu-jing Zhang Wen-jing Yang Xiao-yuan Yao Xian-liang Wang 《Indoor air》2021,31(5):1391-1401
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently. 相似文献
2.
Steven J. Hadeed Mary Kay O’Rourke Robert A. Canales Lorencita Joshweseoma Gregory Sehongva Morris Paukgana Emmanuel Gonzalez-Figueroa Modhi Alshammari Jefferey L. Burgess Robin B. Harris 《Indoor air》2021,31(6):2008-2019
Indoor and outdoor concentrations of PM2.5 were measured for 24 h during heating and non-heating seasons in a rural solid fuel burning Native American community. Household building characteristics were collected during the initial home sampling visit using technician walkthrough questionnaires, and behavioral factors were collected through questionnaires by interviewers. To identify seasonal behavioral factors and household characteristics associated with indoor PM2.5, data were analyzed separately by heating and non-heating seasons using multivariable regression. Concentrations of PM2.5 were significantly higher during the heating season (indoor: 36.2 μg/m3; outdoor: 22.1 μg/m3) compared with the non-heating season (indoor: 14.6 μg/m3; outdoor: 9.3 μg/m3). Heating season indoor PM2.5 was strongly associated with heating fuel type, housing type, indoor pests, use of a climate control unit, number of interior doors, and indoor relative humidity. During the non-heating season, different behavioral and household characteristics were associated with indoor PM2.5 concentrations (indoor smoking and/or burning incense, opening doors and windows, area of surrounding environment, building size and height, and outdoor PM2.5). Homes heated with coal and/or wood, or a combination of coal and/or wood with electricity and/or natural gas had elevated indoor PM2.5 concentrations that exceeded both the EPA ambient standard (35 μg/m3) and the WHO guideline (25 μg/m3). 相似文献
3.
Burning solid fuels to fulfill daily household energy needs results in chronic exposure to household air pollution (HAP), which is among the world's greatest health risks. This paper presents the results of a cross‐sectional study of cookstove usage, fuel consumption, and indoor PM2.5 concentrations in rural and urban Honduran homes cooking with the Envirofit HM‐5000 metal plancha stove (n = 32) as compared to control households using baseline cooking technologies (n = 33). Temperature‐based stove usage measurements showed high HM‐5000 acceptance, with significant displacement of the traditional cookstoves at both the urban (99%, P < .05) and rural study sites (75%, P < .05). However, longer‐term usage data collected in peri‐urban households showed that participants cooked on the HM‐5000 more frequently during the 3‐day monitoring period than during the following 3 weeks. Average indoor PM2.5 was 66% lower in HM‐5000 households as compared to control households (P < .05). Lower indoor PM2.5 concentrations observed in participant homes as compared to control households, supported by high usage and traditional stove displacement, suggest the potential for the HM‐5000 to yield health improvements in adopting Honduran households. 相似文献
4.
Karoline K. Barkjohn Christina Norris Xiaoxing Cui Lin Fang Tongshu Zheng James J. Schauer Zhen Li Yinping Zhang Marilyn Black Junfeng Zhang Michael H. Bergin 《Indoor air》2021,31(1):74-87
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies. 相似文献
5.
Vanessa J. Burrowes Ricardo Piedrahita Ajay Pillarisetti Lindsay J. Underhill Magdalena Fandiño-Del-Rio Michael Johnson Josiah L. Kephart Stella M. Hartinger Kyle Steenland Luke Naeher Katie Kearns Jennifer L. Peel Maggie L. Clark William Checkley HAPIN Investigators 《Indoor air》2020,30(3):445-458
Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3) and personal exposure samples (ECM mean difference of −3.8 µg/m3 vs UPAS mean difference of −12.9 µg/m3). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup. 相似文献
6.
Magdalena Fandiño-Del-Rio Josiah L. Kephart Kendra N. Williams Gary Malpartida Dana Boyd Barr Kyle Steenland Kirsten Koehler William Checkley 《Indoor air》2021,31(5):1509-1521
Household air pollution (HAP) from biomass stoves is a leading risk factor for cardiopulmonary outcomes; however, its toxicity pathways and relationship with inflammation markers are poorly understood. Among 180 adult women in rural Peru, we examined the cross-sectional exposure-response relationship between biomass HAP and markers of inflammation in blood using baseline measurements from a randomized trial. We measured markers of inflammation (CRP, IL-6, IL-10, IL-1β, and TNF-α) with dried blood spots, 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM2.5), black carbon (BC), and carbon monoxide (CO), and 48-h kitchen concentrations of nitrogen dioxide (NO2) in a subset of 97 participants. We conducted an exposure-response analysis between quintiles of HAP levels and markers of inflammation. Markers of inflammation were more strongly associated with kitchen area concentrations of BC than PM2.5. As expected, kitchen area BC concentrations were positively associated with TNF-α (pro-inflammatory) concentrations and negatively associated with IL-10, an anti-inflammatory marker, controlling for confounders in single- and multi-pollutant models. However, contrary to expectations, kitchen area BC and NO2 concentrations were negatively associated with IL-1β, a pro-inflammatory marker. No associations were identified for IL-6 or CRP, or for any marker in relation to personal exposures. 相似文献
7.
J. Volckens C. Quinn D. Leith J. Mehaffy C. S. Henry D. Miller‐Lionberg 《Indoor air》2017,27(2):409-416
Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time‐integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5–3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low‐cost electronics, open‐source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM2.5 across a broad range of concentrations. 相似文献
8.
The ability to inexpensively monitor PM2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low‐cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m3 laboratory and time‐concentration profiles were measured with 7 consumer monitors (2‐3 units each), 2 research monitors (Thermo pDR‐1500, MetOne BT‐645), a Grimm Mini Wide‐Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM2.5. Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time‐resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors—AirBeam, AirVisual, Foobot, Purple Air—were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under‐reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter. 相似文献
9.
Kirsten Koehler Nicholas Good Ander Wilson Anna Mlter Brianna F. Moore Taylor Carpenter Jennifer L. Peel John Volckens 《Indoor air》2019,29(2):231-241
This study investigated the role of microenvironment on personal exposures to black carbon (BC), fine particulate mass (PM2.5), carbon monoxide (CO), and particle number concentration (PNC) among adult residents of Fort Collins, Colorado, USA. Forty‐four participants carried a backpack containing personal monitoring instruments for eight nonconsecutive 24‐hour periods. Exposures were apportioned into five microenvironments: Home, Work, Transit, Eateries, and Other. Personal exposures exhibited wide heterogeneity that was dominated by within‐person variability (both day‐to‐day and between microenvironment variability). Linear mixed‐effects models were used to compare mean personal exposures in each microenvironment, while accounting for possible within‐person correlation. Mean personal exposures during Transit and at Eateries tended to be higher than exposures at Home, where participants spent the majority of their time. Compared to Home, mean exposures to BC in Transit were, on average, 129% [95% confidence interval: 101% 162%] higher and exposures to PNC were 180% [101% 289%] higher in Eateries. 相似文献
10.
Shyfuddin Ahmed Boubakari Ibrahimou Shirmin Bintay Kader Muhammad Ashique Haider Chowdhury Habibul Ahsan Mohammad Yunus 《Indoor air》2021,31(6):2167-2175
Despite significant investment, childhood malnutrition continues to be a significant public health problem especially in least developed countries. The aim of this study was to find association between household biomass fuel (BMF) use and childhood malnutrition in Bangladesh using data from Demographic and Health Survey 2011. We included a total 6891 children under 5 years of age in the analysis. The prevalence of wasting, underweight, and stunting from BMF using household was 16.1% (n = 997; 95%CI, 15.1–17.3), 39.0% (n = 2399; 95%CI, 37.1–40.9), and 43.3% (n = 2620; 95%CI, 41.6–45.1), respectively. Underweight and stunting were significantly higher among children from households using BMF compared with the children from CF using households (underweight, biomass vs clean fuel: 39.0% vs. 23.5%, p < 0.001; stunting, biomass vs clean fuel: 43.3 vs. 31.5%, p < 0.001). The use of BMF in the household was significantly associated with underweight (OR = 1.38; 95%CI: 1.10–1.73) and stunting (OR = 1.58; 95%CI: 1.18–1.98) among children <5 years of age after adjusting possible confounders in mixed effect logistic regression analysis. This study found a significant association between chronic childhood malnutrition and household BMF use which is indicating possible alternative risk factor for malnutrition. Further prospective research is required to explore the mechanism of how BMF use results in chronic malnutrition. 相似文献
11.
This study describes the size distribution and concentration of particles expelled by a portable, 3‐L ultrasonic humidifier. The ultrasonic humidifier was filled with waters of varying mineral content and hardness. Aerosol size distributions were measured during 8 hours of humidifier operation in a typical bedroom. Humidifiers produced approximately 1.22 × 1010‐2.50 × 1010 airborne particles per milliliter of water consumed, resulting in airborne particle concentrations of 3.01‐5.91 × 104 #/cm3, with modes ranging between 109 and 322 nm in diameter. The emission rate of particles varied by water type from 1.02 × 109 to 2.27 × 109 #/s. Lower mineral waters produced fewer, smaller particles when compared to higher mineral waters. Chemical analyses of particles collected with a cascade impactor indicated that the minerals in emitted particles had the same relative mineral concentrations as the fill water. Our results demonstrate that ultrasonic humidifiers should be considered a source of inhalation exposure to minerals dissolved in water, and that the magnitude of exposure to inhalable particles will vary with water quality. 相似文献
12.
Matias Tagle Ajay Pillarisetti Maria Teresa Hernandez Karin Troncoso Agnes Soares Ricardo Torres Aida Galeano Pedro Oyola John Balmes Kirk R. Smith 《Indoor air》2019,29(2):252-262
In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs. 相似文献
13.
Nerriere E Guegan H Bordigoni B Hautemaniere A Momas I Ladner J Target A Lameloise P Delmas V Personnaz MB Koutrakis P Zmirou-Navier D 《The Science of the total environment》2007,373(1):49-56
The spatial distribution of urban population exposures to ambient air particles was investigated as part of the Genotox'ER study conducted in four metropolitan areas (Grenoble, Paris, Rouen and Strasbourg) in France. In each city, 60 to 90 non-smoking adult and children volunteers were selected. Subjects lived in three different urban sectors: one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment. The Harvard Chempass multi-pollutant personal sampler was used to sample PM10 and PM2.5 particles during 48 h during two different seasons ('hot' and 'cold'). The elemental composition of the filters was analysed by Particle-Induced X-ray Emission (PIXE). Sixteen elements were found to be over the method detection limits: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The relative concentrations of elements of crustal origin (Si, Al, Ca) were higher in the coarse fraction of PM10 filters, while elements associated with combustion processes (traffic emissions or industrial combustion) presented higher relative concentrations in the PM2.5 fraction (S, Ni, V, Pb). Spatial heterogeneity of elemental exposures by urban sector is substantial for some metals of health concern, with 20% to 90% greater exposure values, on average, in the traffic proximity or industrial sectors, compared to the background sector, for Fe, Zn, Cu, V and Cr. This spatial heterogeneity should not be overlooked in epidemiological or risk assessment studies. 相似文献
14.
15.
G. S. Downward W. Hu N. Rothman B. Reiss G. Wu F. Wei J. Xu W. J. Seow B. Brunekreef R. S. Chapman R. Vermeulen 《Indoor air》2016,26(5):784-795
Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China, whose residents use a variety of solid fuels for cooking and heating including bituminous and anthracite coal, and wood. Measurements were taken over two consecutive 24‐h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. PMabs measurements were higher in wood burning households (16.3 × 10?5/m) than bituminous and anthracite coal households (12 and 5.1 × 10?5/m, respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r = 0.49, P < 0.01). Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality, and climate change contributions of domestic usage of solid fuels. 相似文献
16.
西安市某办公建筑室内外颗粒物浓度变化特征分析 总被引:1,自引:0,他引:1
本文通过建立质量平衡方程对西安市某办公建筑室内颗粒物浓度进行了理论分析,并对该建筑室内外PM10和PM2.5的质量浓度进行了实时监测。结合线性回归方程、室内外监测浓度线性拟合曲线及室内浓度随时间的指数拟合曲线,对该普通办公房间室内颗粒排放源及室内颗粒浓度变化特征进行了研究。结果表明,该建筑室内PM10的平均发尘为7.93~12.48 mg/h,室内PM2.5的平均发尘为2.89~4.08 mg/h;室内PM10和PM2.5呈现指数变化且随时间呈下降趋势。 相似文献
17.
Indoor air pollution (IAP) from domestic biomass combustion is an important health risk factor, yet direct measurements of personal IAP exposure are scarce. We measured 24-h integrated gravimetric exposure to particles < 2.5 μm in aerodynamic diameter (particulate matter, PM?.?) in 280 adult women and 240 children in rural Yunnan, China. We also measured indoor PM?.? concentrations in a random sample of 44 kitchens. The geometric mean winter PM?.? exposure among adult women was twice that of summer exposure [117 μg/m3 (95% CI: 107, 128) vs. 55 μg/m3 (95% CI: 49, 62)]. Children's geometric mean exposure in summer was 53 μg/m3 (95% CI: 46, 61). Indoor PM?.? concentrations were moderately correlated with women's personal exposure (r=0.58), but not for children. Ventilation during cooking, cookstove maintenance, and kitchen structure were significant predictors of personal PM?.? exposure among women primarily cooking with biomass. These findings can be used to develop exposure assessment models for future epidemiologic research and inform interventions and policies aimed at reducing IAP exposure. PRACTICAL IMPLICATIONS: Our results suggest that reducing overall PM pollution exposure in this population may be best achieved by reducing winter exposure. Behavioral interventions such as increasing ventilation during cooking or encouraging stove cleaning and maintenance may help achieve these reductions. 相似文献
18.
19.
Health and social impacts of improved stoves on rural women: a pilot intervention in Sindh, Pakistan
To assess the acceptability, social and health impacts of improved stoves among women. A cross-sectional study was conducted from April to May 2002 among households using improved stoves in the two villages of District Thatta and Hyderabad, Sindh, Pakistan. A questionnaire was administered to 45 women using improved stoves named Smoke Free Stoves (SFS). The same questionnaire was administered to a sample of 114 women, using Traditional Stoves (TS). Carbon monoxide (CO) levels were measured in a sample of both groups. Multivariate analysis was carried out to adjust for confounders. In addition, focus group discussions (FGDs) were conducted to evaluate the perception of women regarding acceptability and impact of SFS on women. A majority of women reported that SFS produce less smoke and have a beneficial impact on their health. In the multivariate analysis, symptoms of dry cough (AOR=0.61; 95% CI 0.26-1.41), sneezing (AOR=0.54; 95% CI 0.22-1.30) and tears while cooking (TWC) (AOR=0.51; 95% CI 0.21-1.21) are less likely to occur in women using SFS compared to TS. However, the results were not statistically significant possibly due to the small sample. The mean (+/-s.e.) CO levels were 15.4+/-3.4 ppm in SFS and 28.5+/-5.7 ppm in TS kitchens with a mean difference of -13.1 (95% CI -29.5 and 3.2). The results indicate a trend favorable for SFS and suggest that a larger scale project should be undertaken to reach to a definitive conclusion, ideally using a longitudinal design. PRACTICAL IMPLICATIONS: In order to enhance IAQ in kitchens in developing regions of the world stoves for burning of biomass should be constructed in a way that the emission of fuel gases are low. In this way the risk of negative health effects will be reduced. 相似文献
20.
Airborne ultrafine particles (UFP) have been related to adverse health effects, but exposure in vulnerable population groups such as children is still not well understood. We aim to review the scientific literature regarding personal exposure to UFP in different microenvironments in populations until 18 years of age. The bibliographical search was carried out in July 2019 using the online database PubMed and was completed with references in articles found in the search. We selected the studies that used continuous counters and measured UFP levels in both specific microenvironment (houses, schools, transport, etc) and personal exposure. Finally, 32 studies fulfilled the criteria: of these, 10 analyzed personal exposure and 22 examined UFP levels in the microenvironment (especially in schools or nurseries (18/22)) and five in various microenvironments (including dwellings and means of transport, where exposure levels were higher). The characteristics of the microenvironments with the greatest levels of UFP were being close to heavy traffic or near cooking and cleaning activities. This review revealed the wide differences in exposure assessment methodologies that could lead to a lack of uniform and comparable information about the real UFP exposure in children. 相似文献