首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Low cycle fatigue (LCF) life at ambient temperature of Ti alloys is well known to decrease with stress dwell. This phenomenon, called cold dwell fatigue (CDF), is influenced by the peak stress, dwell time, and microstructure. For this study, the CDF life was evaluated by the linear cumulative damage rule. The influence of test conditions and microstructure on the linear cumulative damage rule was also verified. By the linear cumulative damage rule, when creep damage is calculated using the time exhaustion rule, theCDF damage was evaluated by the inequality of DTotal = (DF, DC) ≤ (0.01, 10?6). However, the CDF damage can be evaluated in the range of DTotal = 0.6–1.2 when creep damage was calculated using the ductile exhaustion rule. Results indicate that the evaluation was almost independent of the dwell time, peak stress, and microstructure, so it is also a versatile method for evaluating CDF responses.  相似文献   

2.
Different components of deep-sea submersibles,such as the pressure hull,are usually subjected to inter-mittent loading,dwell loading,and unloading during service.Therefore,for the design and reliability assessment of structural parts under dwell fatigue loading,understanding the effects of intermittent loading time on dwell fatigue behavior of the alloys is essential.In this study,the effects of the inter-mittent loading time and stress ratio on dwell fatigue behavior of the titanium alloy Ti-6Al-4V ELI were investigated.Results suggest that the dwell fatigue failure modes of Ti-6Al-4V ELI can be classified into three types,i.e.,fatigue failure mode,ductile failure mode,and mixed failure mode.The intermittent loading time does not affect the dwell fatigue behavior,whereas the stress ratio significantly affects the dwell fatigue life and dwell fatigue mechanism.The dwell fatigue life increases with an increase in the stress ratio for the same maximum stress,and specimens with a negative stress ratio tend to undergo ductile failure.The mechanism of dwell fatigue of titanium alloys is attribute to an increase in the plastic strain caused by the part of the dwell loading,thereby resulting in an increase in the actual stress of the specimens during the subsequent loading cycles and aiding the growth of the formed crack or damage,along with the local plastic strain or damage induced by the part of the fatigue load promoting the cumu-lative plastic strain during the dwell fatigue process.The interaction between dwell loading and fatigue loading accelerates specimen failure,in contrast to the case for individual creep or fatigue loading alone.The dwell fatigue life and cumulative maximum strain during the first loading cycle could be correlated by a linear relationship on the log-log scale.This relationship can be used to evaluate the dwell fatigue life of Ti alloys with the maximum stress dwell.  相似文献   

3.
The ratcheting behaviour of a bainite 2.25Cr1MoV steel was studied with various hold periods at 455°C. Particular attention was paid to the effect of stress hold on whole‐life ratcheting deformation, fatigue life, and failure mechanism. Results indicate that longer peak hold periods stimulate a faster accumulation of ratcheting strain by contribution of creep strain, while double hold at peak and valley stress has an even stronger influence. Creep strains produced in peak and valley hold periods are noticeable and result in higher cyclic strain amplitudes. Dimples and acquired defects are found in failed specimen by microstructure observation, and their number and size increase under creep‐fatigue loading. Enlarged cyclic strain amplitude and material deterioration caused by creep lead to fatigue life reduction under creep‐fatigue loading. A life prediction model suitable for asymmetric cycling is proposed based on the linear damage summation rule.  相似文献   

4.
Interactive creep–fatigue behaviour of a nickel-base superalloy (IN 597) has been examined at 850 °C under various strain-limited, cyclic torsional loading conditions. In one test, forward creep deformation was reversed by creep under equal magnitude stress levels and strain limits. In other tests, forward creep strain was reversed by fast monotonic plasticity with and without a subsequent period of relaxation. These cycles were repeated within each test until fracture. This paper examines empirically the influence of a number of test variables upon cyclic creep curves, and demonstrates the usefulness of predictions based upon continuous low cycle fatigue and simple creep data when used in conjunction with a mechanical equation of state. A cyclic equilibrium condition was not achieved from these tests. Instead, a progressive softening occurred giving reductions to the amount of creep strain, creep time interval and reversed peak stress with each new cycle. Such reductions are expressed from derived formulae that embrace the range of inelastic strain, cycle number, creep dwell stress, reversed peak stress, and times expended in creep and relaxation.
Observations made on accumulated creep strain reveal the contribution to a creep–fatigue fracture from cyclic creep. This has led to a modified form of the linear damage rule which can provide conservative life predictions for components operating in service under similar cyclic conditions.  相似文献   

5.
6.
Abstract

A series of isothermal strain controlled creep–fatigue tests on fully instrumented cylindrical specimens with shallow chordal crack starters has been conducted for an advanced 9%Cr turbine rotor steel at 600 and 625°C. Cyclic/hold wave shapes involving a dwell period at peak strain in tension or compression were also performed with crack development being monitored by means of electrical potential drop instrumentation. It is found that temperature, total strain range and hold period are the most influential factors on short creep–fatigue crack propagation rates and specimen life. In order to establish a reliable relationship to represent subcritical crack development for high temperature component integrity assessment, the effectiveness of candidate correlating parameters such as cyclic strain range, cyclic J integral and strain energy density factor have been evaluated. Their application to circumstances involving short crack development due to fatigue, and interacting and non-interacting creep loading are evaluated with reference to the evidence determined from post-test metallurgical examination.  相似文献   

7.
The knowledge of mechanical long term behaviour under static and cyclic loading for high temperature components requires methodologies for life assessment in order to employ the full potential of materials. A phenomenological life time prediction concept which was developed for multi‐stage creep fatigue loading demonstrates the applicability of rules for synthesis of stress strain path and relaxation including an internal stress concept, as well as mean stress effects. Further, a creep fatigue interaction concept which was also developed covers a wide range of creep dominant loading as well as fatigue dominant loading. Service‐type experiments conducted at different strain rates and hold times for verification purposes demonstrate the acceptability of life prediction method for variation of conventional 1 %Cr‐steels as well as modern high chromium 9‐10 %Cr‐steels. Generally, the service life of components is influenced by multi‐axial behaviour. Multi‐axial experiments with e.g. notched specimens and with cruciform specimens accompanied by advanced methods for calculation of stress strain path and life time prediction stress conditions are of future interest.  相似文献   

8.
Fretting fatigue behaviour of shot‐peened titanium alloy, Ti‐6Al‐4V was investigated at room and elevated temperatures. Constant amplitude fretting fatigue tests were conducted over a wide range of maximum stresses, σmax= 333 to 666 MPa with a stress ratio of R= 0.1 . Two infrared heaters, placed at the front and back of specimen, were used to heat and maintain temperature of the gage section of specimen at 260 °C. Residual stress measurements by X‐ray diffraction method before and after fretting test showed that residual compressive stress was relaxed during fretting fatigue. Elevated temperature induced more residual stress relaxation, which, in turn, decreased fretting fatigue life significantly at 260 °C. Finite element analysis (FEA) showed that the longitudinal tensile stress, σxx varied with the depth inside the specimen from contact surface during fretting fatigue and the largest σxx could exist away from the contact surface in a certain situation. A critical plane based fatigue crack initiation model, modified shear stress range parameter (MSSR), was computed from FEA results to characterize fretting fatigue crack initiation behaviour. It showed that stress relaxation during test affected fretting fatigue life and location of crack initiation significantly. MSSR parameter also predicted crack initiation location, which matched with experimental observations and the number of cycles for crack initiation, which showed the appropriate trend with the experimental observations at both temperatures.  相似文献   

9.
The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for the LSHR disk superalloy. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were subjected to fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 °C. Two material conditions displayed a wide distribution of fatigue lives, with low lives reduced by two orders of magnitude, while others had more consistent fatigue lives. The occurrence of these very low lives was compared to other mechanical properties, in search of correlations. The low life failures for dwell fatigue life were correlated with material conditions giving highest ultimate tensile strengths and stress relaxation resistance. These results were analyzed by modeling relaxation of peak stresses in the notch with continued dwell fatigue cycling.  相似文献   

10.
In the present exploration, it was attempted to understand the creep‐fatigue (CF) deformation micromechanisms of alloy CM 247 DS LC by conducting low‐cycle fatigue (LCF) and CF tests employing strain amplitude ranging from 0.6% to 1.0% at T = 850°C in the air and performing extensive electron microscopic examinations. The cyclic life of the alloy lessens for all CF tests conducted at 1 and 5 minute dwell time in comparison to LCF tests. Transmission electron microscopy (TEM) examinations confirmed that during CF tests substructure consists of dislocation loop, mixed dislocations, and γ' rafting, a typical creep deformation signature of nickel‐base superalloys, it also consists of features observed during fatigue deformation such as anti‐phase boundary (APB)‐coupled dislocations inside γ' precipitates and local tangles of dislocations. This confirms that the deformation of CF‐tested specimens is ascribed to the synergistic effect of both creep and fatigue. This fact was further verified by scanning electron microscopic (SEM) examinations.  相似文献   

11.
This paper details an advanced method of continuous fatigue damage prediction of rubber fibre composite structures. A novel multiaxial energy‐based approach incorporating a mean stress correction is presented and also used to predict the fatigue life of a commercial vehicle air spring. The variations of elastic strain and complementary energies are joined to form the energy damage parameter. Material parameter α is introduced to adapt for any observed mean stress effect as well as being able to reproduce the well‐known Smith‐Watson‐Topper criterion. Since integration to calculate the energies is simplified, the approach can be employed regardless of the complexity of the thermo‐mechanical load history. Several numerical simulations and experimental tests were performed in order to obtain the required stress‐strain tensors and the corresponding fatigue lives, respectively. In simulations, the rubber material of the air spring was simulated as nonlinear elastic. The mean stress parameter α , which controls the influence of the mean stress on fatigue life, was adjusted with respect to those energy life curves obtained experimentally. The predicted fatigue life and the location of failure are in very good agreement with experimental observations.  相似文献   

12.
This paper investigates the low‐cycle fatigue resistance of BS 460B and BS B500B steel reinforcing bars and proposes models for predicting their fatigue life based on plastic‐strain (?ap) and total‐strain (?a) amplitudes. Constant‐amplitude, strain‐controlled low‐cycle fatigue tests were carried out on these bars under cyclic load with a frequency of 0.05 Hz. The maximum applied axial strain amplitude (?s,max) ranges from 3 to 10% with zero and non‐zero mean strains. The strain ratios (R = ?s,min/?s,max) used are R =?1, ?0.5 and 0. Hysteresis loops were recorded and plastic and total strain amplitudes were related to the number of reversals (2Nf) to fatigue failure and models for predicting the number of reversals to fatigue failure were proposed. It is concluded that the predicted fatigue life of these bars is very accurate when compared with the measured experimental fatigue life results for wide range of values of strain ratios. It is also observed that based on plastic‐strain amplitude, BS B500B consistently has a longer life (higher number of cycles to failure) than those of BS 460B for all R values; however, at low plastic‐strain amplitudes they tend to behave similarly, irrespective of R value. Other observations and conclusions were also drawn.  相似文献   

13.
This study investigates the fatigue characteristics of typical bituminous materials used in road applications. Fatigue testing was performed in a four‐point bending beam test apparatus under controlled strain and stress conditions. Fatigue life was defined using the classical approach as the number of cycles, Nf, to 50% reduction in the initial stiffness modulus. It has also been defined in terms of macro‐crack initiation, N1. A different approach, based on the linear reduction in stiffness during a particular stage of a fatigue test, was introduced to define a damage parameter, and the evolution of this damage parameter with number of cycles was used to characterize fatigue life. Furthermore, refinements to the linear damage model were introduced to take into account the difference in the evolution of dissipated energy between controlled strain and stress testing modes. These modifications have enabled the identification of a unique fatigue damage rate for both controlled strain and stress test modes.  相似文献   

14.
Combined low‐cycle fatigue/high‐cycle fatigue (LCF/HCF) loadings were investigated for smooth and circumferentially V‐notched cylindrical Ti–6Al–4V fatigue specimens. Smooth specimens were first cycled under LCF loading conditions for a fraction of the previously established fatigue life. The HCF 107 cycle fatigue limit stress after LCF cycling was established using a step loading technique. Specimens with two notch sizes, both having elastic stress concentration factors of Kt = 2.7, were cycled under LCF loading conditions at a nominal stress ratio of R = 0.1. The subsequent 106 cycle HCF fatigue limit stress at both R = 0.1 and 0.8 was determined. The combined loading LCF/HCF fatigue limit stresses for all specimens were compared to the baseline HCF fatigue limit stresses. After LCF cycling and prior to HCF cycling, the notched specimens were heat tinted, and final fracture surfaces examined for cracks formed during the initial LCF loading. Fatigue test results indicate that the LCF loading, applied for 75% of total LCF life for the smooth specimens and 25% for the notched specimens, resulted in only small reductions in the subsequent HCF fatigue limit stress. Under certain loading conditions, plasticity‐induced stress redistribution at the notch root during LCF cycling appears responsible for an observed increase in HCF fatigue limit stress, in terms of net section stress.  相似文献   

15.
Electron beam melting of Ni-base superalloy Inconel 718 allows producing a columnar-grained microstructure with a pronounced texture, which offers exceptional resistance against high-temperature loading with severe creep–fatigue interaction arising in components of aircraft jet engines. This study considers the deformation, damage, and lifetime behavior of electron-beam-melted Inconel 718 under in-phase thermomechanical fatigue loading with varying amounts of creep–fatigue interaction. Strain-controlled thermomechanical fatigue tests with equal-ramp cycles, slow–fast cycles, and dwell time cycles are conducted in the temperature range from 300 to 650 °C. Results show that both dwell time and slow–fast cycles promote intergranular cracking, gradual tensile stress relaxation, as well as precipitate dissolution and coarsening giving rise to cyclic softening. The interplay of these mechanisms leads to increased lifetimes in both dwell time and slow–fast tests compared to equal ramp tests at higher strain amplitudes. Conversely, at lower mechanical strain amplitudes, the opposite is observed. A comparison with results of conventional Inconel 718 indicates that the electron-beam-melted material exhibits superior resistance against strain-controlled loading at elevated temperatures such as thermomechanical fatigue.  相似文献   

16.
The paper explores fatigue at both low and high temperature where creep and environmental damage interact with the normal cyclic processes of crack development. This is achieved by studying two contrasting material systems: the titanium alloys (Ti685, Ti834, Ti6246) and the nickel alloys (Udimet 720Li). Particular attention is given to both load and strain control fatigue response and crack development at stress concentration features. In each case there is an interesting balance between the beneficial effects of stress relaxation and the damaging effects of creep and environmental factors. On the crack growth side, the relative contributions of creep and environment are highlighted through measurements made in air and vacuum and by varying R value and dwell time. At the same time, any complications due to closure are removed by careful measurement of closure levels for each condition. The inadequacy of linear damage models for combining cyclic and time dependent effects is highlighted.  相似文献   

17.
Abstract

Type 321 austenitic stainless steel has been used in the UK’s advanced gas cooled reactors for a wide variety of thin section components which are within the concrete pressure vessel. These components operate at typically 650°C and experience very low primary stresses. However, temperature cycling can give rise to a creep fatigue loading and the life assessment of these cycles is calculated using the R5 procedure. In order to provide materials property models and to validate creep fatigue damage predictions, the available uniaxial creep, fatigue and creep fatigue data for Type 321 have been collated and analysed. The analyses of these data have provided evolutionary models for the cyclic stress strain and the stress relaxation behaviour of Type 321 at 650°C. In addition, different methods for predicting creep fatigue damage have been compared and it has been found that the stress modified ductility exhaustion approach for calculating creep damage gave the most reliable predictions of failure in the uniaxial creep fatigue tests. Following this, validation of the new R5 methods for calculating creep and fatigue damage in weldments has been provided using the results of reversed bend fatigue and creep fatigue tests on Type 321 welded plates at 650°C in conjunction with the materials properties that were determined from the uniaxial test data.  相似文献   

18.
In the present investigation, an attempt was made to understand the cyclic deformation micromechanism of gas turbine alloy Inconel 718 at 600 °C (i) by conducting low cycle fatigue and creep–fatigue interaction tests and (ii) by studying the microstructure evolution in the material during fatigue tests through extensive electron microscopy. Bilinear slope was obtained in the Coffin–Manson plot for all low cycle fatigue tests, and it was confirmed through transmission electron microscopic examination that microtwinning was the predominant mode of deformation at low plastic strain values, whereas slip and shearing of γ″ precipitates were the predominant mode of deformation at higher plastic strain values. Fatigue life was adversely affected when hold time was introduced at peak tensile strain during creep–fatigue interaction tests. Formation of stepped interface at microtwin boundaries and coarsening of niobium carbide precipitates were observed to be the major microsturctural changes during creep–fatigue interaction tests.  相似文献   

19.
Research on fatigue crack formation from a corroded 7075‐T651 surface provides insight into the governing mechanical driving forces at microstructure‐scale lengths that are intermediate between safe life and damage tolerant feature sizes. Crack surface marker‐bands accurately quantify cycles (Ni) to form a 10–20 μm fatigue crack emanating from both an isolated pit perimeter and EXCO corroded surface. The Ni decreases with increasing‐applied stress. Fatigue crack formation involves a complex interaction of elastic stress concentration due to three‐dimensional pit macro‐topography coupled with local micro‐topographic plastic strain concentration, further enhanced by microstructure (particularly sub‐surface constituents). These driving force interactions lead to high variability in cycles to form a fatigue crack, but from an engineering perspective, a broadly corroded surface should contain an extreme group of features that are likely to drive the portion of life to form a crack to near 0. At low‐applied stresses, crack formation can constitute a significant portion of life, which is predicted by coupling macro‐pit and micro‐feature elastic–plastic stress/strain concentrations from finite element analysis with empirical low‐cycle fatigue life models. The presented experimental results provide a foundation to validate next‐generation crack formation models and prognosis methods.  相似文献   

20.
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ*  is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号