首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behaviour of small fatigue cracks has been studied in the Al---Li---Cu---Mg---Zr alloy 8090. It was found that the crack inclination normal to the surface of the specimen made crack deflections and kinking in the plane of the specimen surface irrelevant to the crack driving force. The low closure levels associated with small fatigue cracks reduce the effect of microstructure on crack growth but this does not affect the ability of ΔK (stress intensity factor range) to detect microstructural influences. The use of ΔJ (J-integral range) as a correlating parameter reduced the differences between the data for long and short fatigue cracks. However, there was no evidence that ΔJ was superior at identifying microstructural effects. Similarly the effect of the higher-order terms on the value of ΔK was found to be minor. It is concluded that the use of ΔK is not likely to bias the microstructural effects and so ΔK may be used when examining microstructural effects on small fatigue crack growth.  相似文献   

2.
The paper reviews the modern concepts of the vacuum effect on fatigue crack growth under cyclic loading. It reports and discusses experimental data (obtained by the author and others) on the crack growth rate at separate stages of the process, the size and structural characteristics of the plastic zone and the fracture micromechanisms for different metals and alloys in air and in vacuum. The relationship between the macroscopic and microscopic characteristics of crack growth in both environments is considered. The idea is developed that the vacuum effect on the kinetics of crack propagation is associated with changes in the process of dislocation motion in the plastic zone (in contrast to atmospheric conditions) and the mechanism of the effect is sensitive to the fatigue mechanism of metals and alloys.  相似文献   

3.
Interfacial fatigue crack growth in foam core sandwich structures   总被引:1,自引:0,他引:1  
This paper deals with the experimental measurement of face/core interfacial fatigue crack growth rates in foam core sandwich beams. The so-called ‘cracked sandwich beam’ specimen is used, slightly modified, which is a sandwich beam that has a simulated face/core interface crack. The specimen is precracked so that a more realistic crack front is created prior to fatigue growth measurements. The crack is then propagated along the interface, in the core material, during fatigue loading, as is assumed to occur in a real sandwich structure. The crack growth is stable even under constant amplitude testing. Stress intensity factors are obtained from the FEM which, combined with the experimental data, result in standard da/dN versus ΔK curves for which classical Paris’ law constants can be extracted. The experiments to determine stress intensity factor threshold values are performed using a manual load-shedding technique.  相似文献   

4.
Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5–12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size.The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent.  相似文献   

5.
The present contribution investigates the crack‐size effects on Paris' law in accordance with dimensional analysis and intermediate asymptotics theory, which makes it possible to obtain a generalised equation able to provide an interpretation to the various empirical power‐laws available in the Literature. Subsequently, within the framework of fractal geometry, scaling laws are determined for the coordinates of the limit‐points of Paris' curve so that a theoretical explanation is provided to the so‐called short cracks problem. Eventually, the proposed models are compared with experimental data available in the literature which seem to confirm the advantage of applying a fractal model to the fatigue problem.  相似文献   

6.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

7.
The linear part of the fatigue crack growth diagram is found to be divided into Stages IIa and IIb by the point O whose coordinates K* and A are dependent on the physical and structural characteristics of the material. In Stage IIa Keff remains constant as the microcrack advances in increments corresponding to the dislocation cell structure size, λ, pausing for (dN−1) cycles to accumulate the elastic energy required for the crack opening. During Stage IIb Kop remains constant and the microcrack opens during each cycle and advances irrespective of the substructure but in accordance with an increasing value of Keff. The effects of temperature and vacuum on K* are considered; the A values correspond to those of λ and are independent of the above effects.  相似文献   

8.
The prediction of fatigue crack growth at very low ΔK values, and in particular for the threshold region, is important in design and in many engineering applications. A simple model for cyclic crack propagation in ductile materials is discussed and the expression
dadN=21+n(1?2v)(ΔK2eff?ΔK2c,eff)4(1+n)π σ1?nycE1+n ?1+nf
developed. Here, n is the cyclic strain hardening exponent, σyc is cyclic yield, and εf is the true fracture strain. The model is successfully used in the analysis of fatigue data BS 4360-50D steel.  相似文献   

9.
10.
11.
Most of the crack growth equations proposed so far correlate the crack growth rate (da/dN or da/dt) with crack tip parameters such as the stress intensity factor (SIF) or energy release rate (ERR). In our previous works, an experimental setup was designed to examine the applicability and the boundary of the functional relationship between da/dN and the crack tip parameters, particularly, ERR. In the present paper, the variation of the ERR along the experimentally observed curvilinear crack trajectories is obtained by means of the finite element method. The analysis shows that the Paris-Erdogan type of laws are applicable until the crack tip is located outside the strong crack-defect interaction region (SI region). A functional relationship between da/dN and ERR breaks down within this region. This suggests the existence of additional crack tip parameters that are not accounted for within conventional fracture mechanics. An approach to modeling the observed phenomenon is discussed following the concept of the Crack Layer theory.  相似文献   

12.
13.
Environmental influences on near‐threshold fatigue crack growth in wrought magnesium alloy AZ61 were investigated. Fatigue tests were performed in ambient (humid) air, dry air, vacuum, and dry nitrogen gas at 19 kHz cycling frequency and load ratio R = ?1. Threshold stress intensity factor amplitudes, Kth, determined for limiting growth rates below 5 × 10?13 m/cycle were 1.1 MPam1/2 in ambient air and 1.2 MPam1/2 in dry air. A much higher Kth of 1.9 MPam1/2 was measured in vacuum and dry nitrogen gas. This suggests oxygen to be the most detrimental constituent of ambient air that increases near‐threshold crack propagation rates and decreases Kth. The deleterious effect of humidity is comparatively small. Corrosive influences are effective at ultrasonic cycling frequency for growth rates below approximately 3 × 10?9 m/cycle. The crack propagation curves in ambient and dry air show a plateau‐like regime where the fracture mode changes from purely ductile to a mixed ductile and brittle mode. In vacuum and dry nitrogen gas, a ductile crack path is found for all investigated crack growth rates.  相似文献   

14.
15.
Fatigue crack growth rate properties are typically determined by experimental methods in accordance with ASTM Standard E647. These traditional methods use standard notched specimens that are precracked under cyclic tensile loads before the main test. The data that are produced using this approach have been demonstrated elsewhere to be potentially adversely affected by the test method, particularly in the threshold region where load reduction (LR) methods are also required. Coarse‐grained materials that exhibit rough and tortuous fatigue surfaces have been observed to be strongly affected by the tensile precracking and LR, in part because the anomalies caused by crack closure and roughness‐induced closure become more important. The focus of the work reported in this paper was to further develop methods to determine more accurate fatigue crack growth rate properties from threshold through to fracture for coarse‐grained, β‐annealed, titanium alloy Ti‐6Al‐4V extra low interstitial thick plate material. A particular emphasis was put upon the threshold and near threshold region, which is of strong importance in the overall fatigue life of components. New approaches that differ from the ASTM Standard included compression precracking, LR starting from a lower load level and continuing the test beyond rates where crack growth would otherwise be considered below threshold. For the threshold regime, two LR methods were also investigated: the ASTM method and a method where the load is reduced with crack growth such that the crack mouth opening displacement is held constant, in an attempt to avoid remote closure. Constant amplitude fatigue crack growth rate data were produced from threshold to fracture for the titanium alloy at a variety of stress ratios. Spike overload tests were also conducted These data were then used to develop an improved analytical model to predict crack growth under spectrum loading and the predictions were found to correlate well with test results.  相似文献   

16.
An assessment of the effects of microstructure on room temperature fatigue threshold and crack propagation behaviour has been carried out on microstructural variants of U720Li, i.e. as‐received U720Li, U720Li‐LG (large grain variant) and U720Li‐LP (large intragranular coherent γ′ variant). Fatigue tests were carried out at room temperature using a 20 Hz sinusoidal cycling waveform at an R‐ratio = 0.1 on 12.5 mm × 12.5 mm square cross‐section SENB specimens with a 60° starter notch. U720Li‐LG showed the highest threshold ΔKKth), whilst U720Li‐LP showed the lowest ΔKth value. U720Li‐LP also showed higher crack growth rates in the near‐threshold regime and at high ΔK (although at higher ΔK levels the difference was less marked). Crack growth rates of U720Li and U720Li‐LG were relatively similar both in the near‐threshold regime and at high ΔK. The materials showed crystallographic stage I type crack growth in the near‐threshold regime, with U720Li showing distinct crystallographic facets on the fracture surface, while U720Li‐LG and U720Li‐LP showed mostly microfacets and a lower proportion of large facets. At high ΔK, crack growth in the materials becomes flat and featureless indicative of stage II type crack growth. The observed fatigue behaviour, which is an effect of the combined contributions of intrinsic and extrinsic crack growth resistances, is rationalized in terms of the microstructural characteristics of the materials. Enhanced room temperature fatigue threshold and near‐threshold long crack growth resistance are seen for materials with larger grain size and higher degree of planar slip which may be related to increased extrinsic crack growth resistance contributions from crack tip shielding and roughness‐induced crack closure. Differences in the deformation behaviour, either homogeneous or heterogeneous due to microstructural variation in this set of materials may provide approximately equivalent intrinsic crack growth resistance contributions at room temperature.  相似文献   

17.
Recent studies have illustrated a predominant role of the residual stress on the fatigue crack growth in friction stir welded joints. In this study, the role of the residual stress on the propagation of fatigue cracks orthogonal to the weld direction in a friction stir welded Ti‐6Al‐4V joint was investigated. A numerical prediction of the fatigue crack growth rate in the presence of the residual stresses was carried out using AFGROW software; reasonable correspondence between the predictions and the experimental results were observed when the effects of residual stress were included in the simulation.  相似文献   

18.
The fatigue crack growth characteristics of high-strength aluminium alloys are discussed in terms of behaviour during mechanical testing and fracture surface appearance. For a wide range of crack growth rates, the crack extends both by the formation of ductile striations and by the coalescence of micro-voids. Dimples are observed at stress intensities very much less than the plane strain fracture toughness, and this is explained in terms of the probability of inclusions lying close to the crack tip. The striation formation process is described as a combination of environmentally-enhanced cleavage processes and plastic blunting of the crack tip.  相似文献   

19.
Aircraft grade 7010 aluminum alloy was heat treated to two different conditions: (1) standard peak aging (T6) and (2) retrogression and re‐aging (RRA). The microstructures of these alloys were characterized by using transmission electron microscope. Fatigue crack growth rate (FCGR) tests were conducted using standard compact tension specimens, following ASTM standards. Tests were conducted at various stress ratios, R ranging from 0.1 to 0.7. The RRA‐treated alloy was observed to contain coarsened η′ (MgZn2) precipitates with higher inter‐particle spacing when compared with T6‐treated alloy. The grain boundary precipitates (GBPs) were also coarsened and discontinuous in RRA‐treated alloy as compared with continuous GBPs in T6 condition. The FCGR was lower and ΔKth was higher in RRA‐treated alloy compared with T6‐treated alloy at all the stress ratios investigated. Improved fatigue crack growth resistance in RRA‐treated alloy was correlated to the modified microstructure and enhanced crack closure levels.  相似文献   

20.
The influence of cross-sectional thickness on fatigue crack growth   总被引:6,自引:0,他引:6  
For thin structures, fatigue crack growth rates may vary with the structure's thickness for a given stress intensity factor range. This effect is mainly due to the change in the nature of the plastic deformation when the plastic zone size becomes comparable with, or greater than, the cross-sectional thickness. Variations in the constraint affect both the crack tip plastic blunting behaviour as well as the fatigue crack closure level. Approximate expressions are constructed for the constraint factor based on asymptotic values and numerical results, which are shown to correlate well with finite element results. It is demonstrated that the present results not only permit predictions of the specimen thickness effects on fatigue crack propagation under spectrum loading, but also eliminate the need to determine the constraint factor by curve-fitting crack growth data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号