首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3D printing in additive manufacturing is considered as one of key technologies to the future high-precision manufacturing in order to benefit diverse industries in building construction, product development, biomedical innovation, etc. The increasing applications of 3D printed components depend primarily on their significant merits of reduced weight, minimum used materials, high precision and shorter production time. Furthermore, it is very crucial that such 3D printed components can maintain the same or even better material performance and product quality as those achieved by conventional manufacturing methods. This study successfully fabricated 3D printed mechanical testing samples of PLA and PLA/wood fibre composites. 3D printing parameters including infill density, layer height and the number of shells were investigated via design of experiments (DoE), among which the number of shells was determined as the most significant factor for maximising tensile strengths of PLA samples. Further, DoE work evaluated the effect of material type (i.e., neat PLA and PLA/wood fibres) and the number of shells on tensile, flexural and impact strengths of material samples. It is suggested that material type is the only predominant factor for maximising all mechanical strengths, which however are consistently lower for PLA/wood fibre composites when compared with those of neat PLA. Increasing the number of shells, on the other hand, has been found to improve almost all strength levels and decrease infill cavities. The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-018-0211-3  相似文献   

2.
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.  相似文献   

3.
3D printing is an ever growing industry that provides many benefits to the advanced manufacturing and design industry. However, parts tend to be static, rigid, and lack multi-purpose use. Recently, a new technology has emerged that uses 3D printing to print parts with the ability to change shape over time when exposed to different external stimuli. This new technology has been called 4D printing. Creation of a new material that is capable of changing shape when exposed to different stimuli and possess the ability to be 3D printed can be a difficult and a long process. Due to this strenuous process, the potential of a common fused deposition modelling material, poly(lactic) acid (PLA), for use in 4D printing is investigated and the concept of combining PLA with nylon fabric for the creation of smart textiles is explored. PLA possesses thermal shape memory behaviour and maintains these abilities when combined with nylon fabric that can be thermomechanically trained into temporary shapes and return to their permanent shapes when heated.  相似文献   

4.
This paper deals with the fatigue behaviour of a short fibre reinforced thermoplastic under multi‐axial cyclic stress. Based on experimental results on notched and plain specimens, limits of existing methods for the fatigue life estimation in the design process of components exposed to complex multi‐axial loads were investigated. During the manufacturing process of short fibre reinforced thermoplastic components, a moderately anisotropic behaviour in stiffness and strength arises. Because of the material's anisotropy, classical failure hypotheses for the assessment of multiaxial load cases do not apply. In this study, a fatigue failure hypothesis was implemented that assesses the stress components in accordance with the correlating fatigue strengths in the material coordinate system, considering potential interaction between the stress components. Striving for a verified multi‐usable fatigue life assessment method, multiaxial load cases were examined experimentally. The experimental results on unnotched and notched specimens and the fatigue life estimation on the basis of the Tsai‐Wu‐failure hypothesis will be presented.  相似文献   

5.
Direct laser writing by two-photon lithography enables the manufacturing of tailored 3D objects, commonly referred to as 3D-printing, with submicrometer precision. Thereby, new approaches are enabled for miniaturized optical and mechanical devices, where basic material properties act as design guideline and initial input for finite element simulation-driven device design. These mechanical properties are accessible through micromechanical testing and suitably adapted miniaturized specimens. With direct laser writing, a micromechanical specimen geometry can be readily manufactured without additional postprocessing, enabling the possibility of repetitive sample production and further high-throughput testing. Widely overhanging features, as in common bending beam or tension specimens, easily cause floating layers as writing artifacts and thereby undefined geometries. Within this work, an approach to overcome this issue is presented. By introducing a slight taper within the geometry at initially printed layers, a reliable sample geometry is achievable without changing the overall mechanical behavior. As showcase geometries, miniaturized notched cantilever and advanced push-to-pull devices incorporating a notched tension specimen are detailed. Mechanical testing is conducted in situ and ex situ, and the mechanical influence from introducing a taper to a straight geometry is assessed via a finite element modeling. Thereby, a comprehensive approach for high-throughput micromechanical testing is established.  相似文献   

6.
Fused deposition modeling (FDM) is among the extensively used and the most economical additive manufacturing processes. Currently, the surface finish obtained for FDM additive manufactured parts are not at par with the current industrial application. To overcome the limitation of high surface roughness of 3D printed parts, a novel finishing technique has been proposed which includes primary and secondary finishing processes. While facing and lapping has been used as primary finishing technique, the secondary finishing involves the use of ball end magnetorheological finishing (BEMRF) process. BEMRF process is an unconventional finishing process which utilizes an advanced approach to impart finish on magnetic as well as non-magnetic materials that may be flat or freeform in shape. This article presents the experimental and analytical study to finish a polylactic acid (PLA) workpiece material manufactured by FDM process and finished using the BEMRF technique. The surface roughness of the FDM component has been reduced from initial surface roughness Ra = 20 µm to final value of Ra = 81 nm by combined primary and secondary finishing processes. The effect of magnetorheological polishing (MRP) fluid’s composition and finishing time is discussed and is followed by optimization of MRP fluid for maximum percentage reduction in surface roughness.  相似文献   

7.
Experimental and numerical determination of crack resistance curves in the notched‐bar impact test The assessment of the reliability of components requires the knowledge of crack resistance curves, which are often not available due to lack of specimen material. More likely is the availability of typical material parameters such as the yield strength, tensile strength, uniform elongation, elongation at rupture as well as upper shelf impact energy and the lateral elongation of notched‐bar impact test specimens. The material model of Gurson describes ductile crack growth due to the nucleation, growth and coalescence of voids in the material. Although dependent on the material and temperature, the material parameters of the Gurson model are independent of the specimen geometry and rate of loading. This latter fact allows one to use the values of these parameters determined on statically‐loaded fracture mechanics specimens to model specimens with other geometries and subjected to different loading conditions, in particular to model impact loaded Charpy‐V specimens. A method is proposed to construct crack resistance curves based on available data of tension tests and on quasi‐static yield curves. Dynamic yield curves are determined using proven procedures as based on the analysis of the dislocation activation energy. The ductile damage parameters are then obtained via simulation of tests on notched tensile specimens and notched‐bar impact tests as well as the fitting to the upper shelf impact energy. In this way, the ductile damage parameters are determined, which in turn enable the determination of the required J‐resistance curves via simulation of ductile crack growth in fracture mechanics specimens. Thus, the application of the classical J‐integral concept gets possible. Furthermore, the independence of the identified material parameters from the geometry of the specimen then allows the use of the Gurson model to analyse the safety of structural components with cracks directly.  相似文献   

8.
This paper is concerned with the use of the Modified Wöhler Curve Method (MWCM) applied in conjunction with the Theory of Critical Distances (TCD) to estimate fatigue lifetime of mechanical components subjected to multiaxial cyclic loading and experiencing stress concentration phenomena. In more detail, our engineering approach takes as its starting point the idea that accurate estimates can be obtained by simply assuming that the value of the critical length, LM, to be used to evaluate fatigue damage in the medium–cycle multiaxial fatigue regime is a function of the number of cycles to failure, Nf. In other words, the MWCM, which is a bi‐parametrical critical plane approach, is suggested here to be applied by directly post‐processing the linear‐elastic stress state damaging a material point whose distance from the notch tip increases as Nf decreases. According to the main feature of the TCD, the above LM versus Nf relationship is assumed to be a material property to be determined experimentally: such an hypothesis results in a great simplification of the fatigue assessment problem because, for a given material, the same critical length can be used to estimate fatigue damage independent of the considered geometrical feature. The accuracy of the devised approach was checked by analysing about 150 experimental results we generated by testing V‐notched cylindrical samples made of a commercial cold‐rolled low‐carbon steel. The above specimens were tested under in‐phase and out‐of‐phase combined tension and torsion, considering the damaging effect of superimposed static stresses as well. Moreover, in order to better check its accuracy in assessing notched components subjected to complex loading paths, our method was also applied to several data sets taken from the literature. This extensive validation exercise allowed us to prove that the MWCM applied along with the TCD is successful in estimating medium‐cycle multiaxial fatigue damage (Nf values in the range 104–106), resulting in predictions falling within the widest scatter band between the two used to calibrate the method itself. Such a high accuracy level is very promising, especially in light of the fact that the proposed approach predicts multiaxial fatigue lifetime by post‐processing the linear elastic stress fields in the fatigue process zone: this makes our method suitable for being used to assess real components by performing the stress analysis through simple linear‐elastic FE models.  相似文献   

9.
This study presents a novel process and manufacturing system for the fabrication of Electric Double-Layer Capacitors (EDLCs) as energy storage devices. It shows an approach for printing multilayer EDLC components using 3D printing technology. This process allows layers of activated carbon (AC) slurry, gel electrolyte, and composite solid filaments to be printed with high precision. The study describes the detailed process of deposition of the AC and gel electrolyte using the dual nozzle system. The performance of the flexible EDLCs manufactured by 3D printing in a rectilinear infill pattern has been investigated. It describes the energy storage performance of the printed supercapacitors in relation to the differences in thickness of the AC printed layers and the differences in density of gel electrolyte. A supercapacitor based on printed AC and composite materials displays a specific capacitance of 38.5?mF?g?1 when measured at a potential rate change of 20?mV?s?1 and a current density of 0.136?A?g?1. The highest energy density value for the flexible EDLC was 0.019?Wh?kg?1 and power density of 165.0?W?kg?1 in 1.6?M H2SO4/PVA gel electrolyte.  相似文献   

10.
This paper investigates the accuracy of the linear‐elastic Theory of Critical Distances (TCD) in estimating high‐cycle fatigue strength of notched metallic materials experiencing elevated temperatures during in‐service operations. The TCD postulates that the fatigue damage extent can be estimated by directly post‐processing the entire linear‐elastic stress field acting on the material in the vicinity of the crack initiation locations. The key feature of this theory is that the high‐cycle fatigue assessment is based on a scale length parameter that is assumed to be a material property. The accuracy of this design method was checked against a number of experimental results generated, under axial loading, by testing, at 250 °C, notched specimens of carbon steel C45. To further investigate the reliability of the TCD, its accuracy was also checked via several data taken from the literature, these experimental results being generated by testing notched samples of Inconel 718 at 500 °C as well as notched specimens of directionally solidified superalloy DZ125 at 850 °C. This validation exercise allowed us to prove that the linear‐elastic TCD is successful in estimating high‐cycle fatigue strength of notched metallic materials exposed to elevated temperature, resulting in estimates falling within an error interval of ±20%. Such a high level of accuracy suggests that, in situations of practical interest, reliable high‐cycle fatigue assessment can be performed without the need for taking into account those non‐linearities characterising the mechanical behaviour of metallic materials at high temperature, the used critical distance being still a material property whose value does not depend on the sharpness of the notch being designed.  相似文献   

11.
The paper describes investigation results on fracture in notched concrete beams under quasi‐static three‐point bending by the X‐ray micro‐computed tomography. The two‐dimensional (2D) and three‐dimensional image procedures were used. Attention was paid to width, length, height and shape of cracks along beam depth. In addition, the displacements on the surface of concrete beams during the deformation process were measured with the 2D digital image correlation technique in order to detect strain localisation before a discrete crack occurred. The 2D fracture patterns in beams were numerically simulated with the finite‐element method using an isotropic damage constitutive model enhanced by a characteristic length of micro‐structure. Concrete was modelled as a random heterogeneous four‐phase material composed of aggregate, cement matrix, interfacial transitional zones and air voids. The advantages of the X‐ray micro‐computed tomography were outlined.  相似文献   

12.
Among the several techniques for additive manufacturing (AM), fused deposition modelling (FDM) is widely used. Fused deposition modelling process uses a thermoplastic material, which is melted and then extruded layer by layer through a nozzle, in order to create a three-dimensional object. As a result of the default setting of process parameters provided by the manufacturers, produced parts normally have a poor surface finish, low mechanical properties, low dimensional accuracy, and increased residual stresses compared to the parts produced using conventional manufacturing processes like molding (casting). Qualities of fused deposition modelled (FDMed) parts are generally affected by process parameters including the layer thickness, extrusion temperature, build orientation, printing speed, raster angle, infill density, raster width, nozzle diameter, and air gap. Increasing infill density, printing temperature, and decreasing print speed and layer thickness lead to increase mechanical strength and improve the surface finish of the printed parts. The optimal process parameters are preferred to achieve superior properties of the parts. This paper reviews the optimal fused deposition modelling process parameters on part qualities for making the stability of used deposition modelled parts for use. Various process parameters are identified in order to obtain desirable qualities in the manufactured parts. Areas for future research are proposed.  相似文献   

13.
4D打印是一门新兴的制造技术,所打印结构的形状、属性或功能在外部环境的刺激下会随着时间的推移而变化.智能软物质材料由于变形大,激励响应机制多,响应速度快等特点被广泛使用于4D打印中,尤其是形状记忆水凝胶和形状记忆聚合物.目前对复合软材料的刚度和弯曲形状的控制是4D打印在应用上的两个难题,建立4D打印复合结构的等效模量和...  相似文献   

14.
The recent development of the RepRap, an open-source self-replicating rapid prototyper, has made 3-D polymer-based printers readily available to the public at low costs ( < $500). The resultant uptake of 3-D printing technology enables for the first time mass-scale distributed digital manufacturing. RepRap variants currently fabricate objects primarily from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), which have melting temperatures low enough to use in melt extrusion outside of a dedicated facility, while high enough for prints to retain their shape at average use temperatures. In order for RepRap printed parts to be useful for engineering applications the mechanical properties of printed parts must be known. This study quantifies the basic tensile strength and elastic modulus of printed components using realistic environmental conditions for standard users of a selection of open-source 3-D printers. The results find average tensile strengths of 28.5 MPa for ABS and 56.6 MPa for PLA with average elastic moduli of 1807 MPa for ABS and 3368 MPa for PLA. It is clear from these results that parts printed from tuned, low-cost, open-source RepRap 3-D printers can be considered as mechanically functional in tensile applications as those from commercial vendors.  相似文献   

15.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

16.
This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.  相似文献   

17.
Experimental studies are presented on the shear plugging and frictional behaviour of composites and fabrics under quasi‐static loading. The primary focus is on the effect of specimen thickness on quasi‐static shear plugging behaviour. In the present study, quasi‐static shear plugging and through‐the‐thickness frictional tests are carried out on three types of materials. The materials investigated are 2D plain weave E‐glass/epoxy, 2D plain weave T300 carbon/epoxy and 2D plain weave E‐glass fabric. Typical results on shear plugging strength and frictional behaviour are presented. Effect of specimen thickness on quasi‐static shear plugging behaviour is also investigated.  相似文献   

18.
This article reviews the current activities at the Montanuniversität Leoben on the design, processing, and characterization of 3D printed advanced ceramics using the lithography-based manufacturing technology. An overview of the challenges and the opportunities offered to improve the mechanical properties of printing ceramics is given. Their brittle failure is analyzed within the framework of linear elastic fracture mechanics, considering specific aspects of additive manufacturing. Several issues associated with the printing process are addressed, such as surface quality, geometry control, influence of printing directions, as well as the need to establish testing protocols for 3D printed parts. Based on the layer-by-layer capabilities of the stereolithographic process, bio-inspired material design concepts are discussed aiming to enhance the mechanical resistance of 3D-printed ceramics. By tailoring the layer architecture and microstructure of the parts, high strength and fracture resistance may be achieved.  相似文献   

19.
Unmanned aerial vehicles (UAVs) have shown promising benefits in many applications. This has been enabled by the emergence of additive manufacturing (AM), which give the designers a large amount of geometrical freedom. In this paper, a novel design process of fused deposition modeling (FDM) combining both topology and infill optimization is introduced for AM of high performance porous structures. Tensile testing of FDM printed samples is first carried out to study the effect of the build orientation on the mechanical properties of acrylonitrile butadiene styrene (ABS) samples. It is found that samples built perpendicular to the load axis are the weakest with a tensile strength of 29 MPa and Young's modulus of 1960 MPa. The materials properties are fed to the finite elements analysis (FEA) for geometrical topology optimization, aiming to maximize stiffness and reduce weight of those parts. Afterwards, an infill optimization is carried out on the topology optimized parts using different mesostructures such as honeycomb, triangular, and rectangular to achieve high structural performance. The results showed that triangular pattern with 50% infill density had the lowest developed stresses, less mass, and strain energy when compared to other structures. Optimum UAVs parts of a quadcopter are successfully manufactured, assembled, and tested.
  相似文献   

20.
This paper provides a methodology for the prediction of fracture loads in notched materials that combines the equivalent material concept with the theory of critical distances. The latter has a linear‐elastic nature and requires material calibration in those cases where the non‐linear material behaviour is significant. The calibration may be performed by fracture testing on notched specimens or a combination of fracture testing and simulation. The proposed methodology sets out to define an equivalent linear‐elastic material on which the theory of critical distances may be applied through its basic formulation and without any previous fracture testing and/or simulation. It has been applied to PMMA single edge notch bending specimens containing U‐notches, providing accurate predictions of fracture loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号